Background: Determination of blood-meal hosts in blood-fed female Anopheles mosquitoes is important for evaluating vectorial capacity of vector populations and assessing effectiveness of vector control measures. Sensitive molecular methods are needed to detect traces of host blood in mosquito samples, to differentiate hosts, and to detect mixed host blood meals. This paper describes a molecular probe-based quantitative PCR for identifying blood-meal hosts in Anopheles malaria vectors from Papua New Guinea.
Methods: TaqMan oligonucleotide probes targeting specific regions of mitochondrial or nuclear DNA of the three primary Anopheles blood-meal hosts, humans, pigs and dogs, were incorporated into a multiplex, quantitative PCR which was optimized for sensitivity and specificity.
Results: Amplification of serially diluted DNA showed that the quantitative PCR detected as low as 10 ng/μl of host DNA. Application to field-collected, blood-fed Anopheles showed that the quantitative PCR identified the vertebrate hosts for 89% (335/375) of mosquitoes whereas only 55% (104/188) of blood-meal samples tested in a conventional PCR were identified. Of the 104 blood-fed Anopheles that were positive in both PCR methods, 16 (15.4%) were identified as mixed blood meals by the quantitative PCR whereas only 3 (2.9%) were mixed blood meals by the conventional PCR.
Conclusions: The multiplex quantitative PCR described here is sensitive at detecting low DNA concentration and mixed host DNA in samples and useful for blood-meal analysis of field mosquitoes, in particular mixed-host blood meals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048118 | PMC |
http://dx.doi.org/10.1186/s13071-020-3986-6 | DOI Listing |
Sci Rep
January 2025
Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Amendola 165/A, 70126, Bari, Italy.
Tomato spotted wilt virus (TSWV; Orthotospovirus tomatomaculae) is one of the major horticultural threats due to its worldwide distribution and broad host range. In Italy, TSWV is widely spread in tomato (Solanum lycopersicum) crops and causes severe yield losses. In the last decades, several tomato varieties carrying the Sw-5b gene for resistance to TSWV have been released.
View Article and Find Full Text PDFArch Virol
January 2025
Universidade Estadual de Santa Cruz, UESC, Ilhéus, BA, CEP 45662-900, Brazil.
Passion fruit woodiness disease (PWD), caused by cowpea aphid-borne mosaic virus (CABMV), severely damages leaves and fruits, compromising passion fruit production. The dynamics of this infection in Passiflora spp. are still poorly understood.
View Article and Find Full Text PDFInt J Food Microbiol
February 2025
MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
Salmonella is an important foodborne pathogen that poses a significant threat to food safety. This study aims to assess the prevalence, genomic features, and colistin-resistant mechanisms of Salmonella isolates collected from 118 retail pork samples from January 2021 to January 2022 in Shanghai, China. Overall, 46 (39.
View Article and Find Full Text PDFLife Sci
January 2025
Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China. Electronic address:
Aims: Polycystic ovary syndrome (PCOS) is closely associated with metabolic disorders such as insulin resistance and obesity, but the role of adipogenesis in its pathophysiology remains unclear. This study investigates the role of adipogenesis in PCOS development and evaluates whether hyperoside (HPS), an anti-adipogenic herbal compound, can improve PCOS by inhibiting adipogenesis.
Main Methods: A combination of in vivo and in vitro models was used to assess the impact of HPS on ovarian function, insulin resistance, and adipogenesis.
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama 6201-001 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama 6201-001 Covilhã, Portugal. Electronic address:
Rapid, quantitative, and sensitive detection of viral oligonucleotides can help to diagnose the infection before symptoms occur, monitor disease progression, and identify viral subtypes. A one-pot, simple, rapid hairpin-mediated nicking enzymatic signal amplification (HNESA) method was previously developed for nucleic acids detection. In the present work, this method was applied for the detection of SARS-CoV-2 RNA by designing an assistant probe (AP) that contains the complementary sequence for the target, the sequence of hybridization with the loop region of the molecular beacon (MB), and the recognition site of the nicking endonuclease Nt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!