Membrane monocarboxylate transporter 1 (/MCT1) plays an important role in hepatocyte homeostasis, as well as drug handling. However, there is no available information about the impact of liver pathology on the transporter levels and function. The study was aimed to quantify mRNA (qRT-PCR) and MCT1 protein abundance (liquid chromatography-tandem mass spectrometry (LC---MS/MS)) in the livers of patients diagnosed, according to the standard clinical criteria, with hepatitis C, primary biliary cirrhosis, primary sclerosing hepatitis, alcoholic liver disease (ALD), and autoimmune hepatitis. The stage of liver dysfunction was classified according to Child-Pugh score. Downregulation of /MCT1 levels was observed in all liver pathology states, significantly for ALD. The progression of liver dysfunction, from Child-Pugh class A to C, involved the gradual decline in mRNA and MCT1 protein abundance, reaching a clinically significant decrease in class C livers. Reduced levels of MCT1 were associated with significant intracellular lactate accumulation. The MCT1 transcript and protein did not demonstrate significant correlations regardless of the liver pathology analyzed, as well as the disease stage, suggesting posttranscriptional regulation, and several microRNAs were found as potential regulators of MCT1 abundance. MCT1 membrane immunolocalization without cytoplasmic retention was observed in all studied liver pathologies. Overall, the study demonstrates that /MCT1 is involved in liver pathology, especially in ALD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084425PMC
http://dx.doi.org/10.3390/ijms21051606DOI Listing

Publication Analysis

Top Keywords

liver pathology
20
liver
9
monocarboxylate transporter
8
mct1 protein
8
protein abundance
8
liver dysfunction
8
mct1
7
pathology
5
transporter mct1
4
mct1 liver
4

Similar Publications

BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.

View Article and Find Full Text PDF

The aim of this study was to clarify the taxonomic identification of a hemoflagellate and assess the effect of trypanosome infection on Larimichthys crocea. Giemsa staining showed the presence of three morphotypes of trypomastigotes. The trypanosomes had the following morphological characteristics: a slender body with a long flagellum at the front; body size 12.

View Article and Find Full Text PDF

Simultaneous Activation of Beta-Oxidation and De Novo Lipogenesis in MASLD-HCC: A New Paradigm.

Liver Int

February 2025

Department of Digestive and Hepatobiliary Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.

Background And Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of hepatocellular carcinoma (HCC). In this study, we combine metabolomic and gene expression analysis to compare HCC tissues with non-tumoural tissues (NTT).

Methods: A non-targeted metabolomic strategy LC-MS was applied to 52 pairs of human MASLD-HCC and NTT separated into 2 groups according to fibrosis severity F0F1-F2 versus F3F4.

View Article and Find Full Text PDF

Aim: This study aims to investigate the clinical utility of the derived neutrophil-to-lymphocyte ratio (dNLR) and the Geriatric Nutritional Risk Index (GNRI) in predicting treatment outcomes for patients with unresectable hepatocellular carcinoma (HCC) undergoing combination therapy with atezolizumab and bevacizumab (Atez/Bev).

Methods: A retrospective analysis was conducted on 310 patients. The dNLR, NLR, and GNRI were calculated, and their impact on progression-free survival (PFS) and overall survival (OS) was assessed.

View Article and Find Full Text PDF

The importance of preclinical models for cholangiocarcinoma drug discovery.

Expert Opin Drug Discov

January 2025

Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria.

Introduction: Biliary tract cancer (BTC) comprises a clinically diverse and genetically heterogeneous group of tumors along the intra- and extrahepatic biliary system (intrahepatic and extrahepatic cholangiocarcinoma) and gallbladder cancer with the common feature of a poor prognosis, despite increasing molecular knowledge of associated genetic aberrations and possible targeted therapies. Therefore, the search for even more precise and individualized therapies is ongoing and preclinical tumor models are central to the development of such new approaches.

Areas Covered: The models described in the current review include simple and advanced in vitro and in vivo models, including cell lines, 2D monolayer, spheroid and organoid cultures, 3D bioprinting, patient-derived xenografts, and more recently, machine-perfusion platform-based models of resected liver specimens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!