Fragile X syndrome (FXS) is mostly due to the expansion and subsequent methylation of a polymorphic CGG repeat in the 5' UTR of the gene. Full mutation alleles (FM) have more than 200 repeats and result in gene silencing and FXS. FMs arise from maternal premutations (PM) that have 56-200 CGGs; contractions of a maternal PM or FM are rare. Here, we describe two unaffected boys in two independent FXS families who inherited a non-mosaic allele in the normal and intermediate range, respectively, from their mothers who are carriers of an expanded CGG allele. The first boy inherited a 51 CGG allele (without AGG interruptions) from his mother, who carries a PM allele with 72 CGGs. The other boy inherited from his FM mother an unusual allele with 19 CGGs resulting from a deletion, removing 85 bp upstream of the CGG repeat. Given that transcription of the deleted allele was found to be preserved, we assume that the binding sites for transcription factors are excluded from the deletion. Such unusual cases resulting in non-mosaic reduction of maternal CGG expansions may help to clarify the molecular mechanisms underlying the instability of the gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140891PMC
http://dx.doi.org/10.3390/genes11030248DOI Listing

Publication Analysis

Top Keywords

fragile syndrome
8
cgg repeat
8
cgg allele
8
boy inherited
8
allele cggs
8
allele
6
cgg
5
reversion normal
4
normal expanded
4
expanded alleles
4

Similar Publications

Protocol for generating and characterizing a nasal epithelial model using imaging with application for respiratory viruses.

STAR Protoc

January 2025

Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. Electronic address:

Air-liquid interface (ALI) culture can differentiate airway epithelial cells to recapitulate the respiratory tract in vitro. Here, we present a protocol for isolating and culturing nasal epithelial cells from turbinate tissues for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We describe steps to overcome challenges of imaging fragile cultures, detect the production of mucus, and quantify intracellular virus post-SARS-CoV-2 infection.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a genetic condition caused by the inheritance of alleles with >200 CGG repeats in the 5' UTR of the fragile X messenger ribonucleoprotein 1 () gene. These full mutation (FM) alleles are associated with DNA methylation and gene silencing, which result in intellectual disabilities, developmental delays, and social and behavioral issues. Mosaicism for both the size of the CGG repeat tract and the extent of its methylation is commonly observed in individuals with the FM.

View Article and Find Full Text PDF

Disorders: Basics of Biology and Therapeutics in Development.

Cells

December 2024

Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.

Fragile X Syndrome (FXS) presents with a constellation of phenotypes, including trouble regulating emotion and aggressive behaviors, disordered sleep, intellectual impairments, and atypical physical development. Genetic study of the X chromosome revealed that substantial repeat expansion of the 5' end of the gene fragile X messenger ribonucleoprotein 1 () promoted DNA methylation and, consequently, silenced expression of . Further analysis proved that shorter repeat expansions in also manifested in disease at later stages in life.

View Article and Find Full Text PDF

Fragile X Syndrome (FXS) is associated with intellectual disability, hyperactivity, social anxiety and signs of autism. Hyperactivation of NADPH oxidase has been previously described in the brain of the male -KO mouse. This work aims to demonstrate the efficacy of Apocynin, a specific NADPH oxidase inhibitor, in treating Fragile X mouse hallmarks.

View Article and Find Full Text PDF

It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!