A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Influence of the Depth of Cut in Single-Pass Grinding on the Microstructure and Properties of the C45 Steel Surface Layer. | LitMetric

The Influence of the Depth of Cut in Single-Pass Grinding on the Microstructure and Properties of the C45 Steel Surface Layer.

Materials (Basel)

Department of Materials Engineering and Bonding, Faculty of Mechanical Engineering, Gdańsk University of Technology, G. Narutowicza Str. 11/12, 80-233 Gdańsk, Poland.

Published: February 2020

The paper contains the results of a metallographic examination and nanoindentation test conducted for the medium carbon structural steel with low content of Mn, Si, Cu, Cr, and Ni after its grinding to a depth ranging from 2 μm to 20 μm, at constant cutting speed (peripheral speed) of v = 25 ms and constant feed rate of v = 1 m/min. Applied grinding parameters did not cause the surface layer hardening, which could generate an unfavorable stress distribution. The increase in the surface hardness was obtained due to the work hardening effect. Microstructure, phase composition, and chemical composition of the grinded surface layer were examined using an X-ray diffractometer, light microscope, and scanning microscope equipped with X-ray energy-dispersive spectroscopy, respectively. Hardness on the grinded surface and on the cross-section was also determined. It was shown that the grinding of C45 steel causes work hardening of its surface layer without phase transformation. What is more, only grinding to a depth of 20 μm caused the formation of an oxide scale on the work-hardened surface layer. Nanoindentation test on the cross-section, at a short distance from the grinded surface, has shown that ferrite grains were more susceptible to work hardening than pearlite grains due to the creation of an equiaxed cellular microstructure, and that different dislocation substructure was created in the work-hardened surface layer after grinding to different depths.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084852PMC
http://dx.doi.org/10.3390/ma13051040DOI Listing

Publication Analysis

Top Keywords

surface layer
24
work hardening
12
grinded surface
12
surface
9
c45 steel
8
nanoindentation test
8
grinding depth
8
work-hardened surface
8
grinding
6
layer
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!