Ecological setup, ploidy diversity, and reproductive biology of Paspalum modestum, a promising wetland forage grass from South America.

Genet Mol Biol

University of Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Goettingen, Germany.

Published: February 2020

With ever-rising demand for food, forage breeding for intensification of cattle production is also taking a leap. In South America, cattle production systems are displaced to marginal areas poorly exploited with cultivated pastures yet with high potential for growing stocking rates. This places the need for using native genetic resources to breed locally adapted plant genotypes that benefits from better forage quality, yield, and lesser threat to the local biodiversity. Paspalum modestum Mez is a grass species that produces quality forage and grows in marginal areas like estuaries and floodplains, suitable for introduction in breeding programs. In this study we characterize the species' reproductive biology and ecological preferences needed beforehand any improvement. P. modestum plants found in nature are commonly diploids, rarely triploids, and tetraploids. Chromosome associations during meiosis in polyploids indicate they are autopolyploids. While diploids are sexual self-sterile, analyses of embryology, gamete fertility and experimental crossings show tetraploids are self-compatible facultative apomicts, highly fertile and have a high proportion of sexuality compared to other apomictic species. Ecological niche analysis and species distribution modelling show mean annual temperature and precipitation as main ecological drivers and a wide geographical area of climatic suitability where P. modestum can grow and be exploited as a forage grass. Our study points to P. modestum as a native plant resource appropriate for breeding waterlogging tolerant ecotypes and genotypes of high biomass production adapted to low flow areas in the Subtropics of Brazil, Paraguay, Uruguay and Argentina.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198000PMC
http://dx.doi.org/10.1590/1678-4685-GMB-2019-0101DOI Listing

Publication Analysis

Top Keywords

reproductive biology
8
paspalum modestum
8
forage grass
8
south america
8
cattle production
8
marginal areas
8
modestum
5
forage
5
ecological
4
ecological setup
4

Similar Publications

Background: A didelphic uterus represents a unique and infrequent congenital condition in which a woman possesses two distinct uteri, each with its own cervix. This anomaly arises due to partial or incomplete merging of the Müllerian ducts during the developmental stages in the womb. Accounting for uterine malformations, a didelphic uterus is a relatively rare condition, affecting approximately 0.

View Article and Find Full Text PDF

The selection and expression of conspicuous colorations in animals is often related to anti-predation strategies and sociosexual communication. The giant river prawn, Macrobrachium rosenbergii (de Man, 1879) is a species with three male morphotypes that vary in claws' coloration and the size of the animals. It has been suggested that male reproductive quality might be associated to their coloration, but evidence is still conflicting.

View Article and Find Full Text PDF

Proteomic analysis of the nonstructural protein 2-host protein interactome reveals a novel regulatory role of SH3 domain-containing kinase-binding protein 1 in porcine reproductive and respiratory syndrome virus replication and apoptosis.

Int J Biol Macromol

January 2025

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China; Guangdong Wens Dahuanong Bio-Pharmaceutical Co., Ltd., Xinxing 527400, China. Electronic address:

Virus-host protein interaction is critical for successful completion of viral replication cycles. As the largest nonstructural protein (NSP) of porcine reproductive and respiratory syndrome virus (PRRSV), NSP2 plays multiple and critical roles in viral replication, antiviral immunity, cellular tropism and virulence. An interactome of this protein with host proteins would be instrumental in full understanding of these multifunctional roles.

View Article and Find Full Text PDF

Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides.

Plant Physiol Biochem

December 2024

Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex.

View Article and Find Full Text PDF

IGF2BP3 curbed by miR-15c-3p restores disrupted lipid storage and progesterone secretion in chicken granulosa cells under oxidative stress through AKT-Raf1-ERK1/2 signaling pathway.

Poult Sci

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China. Electronic address:

For commercial laying hens, the continuous high-intensity ovulation process leads to a significant accumulation of reactive oxygen species (ROS) in the granulosa cells, inducing oxidative stress, which accelerates ovarian aging and shortens the peak laying period. The molecular mechanisms underlying this process remain poorly understood. Therefore, we modeled the processes of oxidative stress and antioxidant in chicken granulosa cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!