CuO is the only known binary multiferroic compound, and due to its high transition temperature into the multiferroic state, it has been extensively studied. In comparison to other prototype multiferroics, the nature and even the existence of the high-temperature incommensurate paraelectric phase (AF3) were strongly debated-both experimentally and theoretically-since it is stable for only a few tenths of a kelvin just below the Néel temperature. Until now, there is no proof by neutron diffraction techniques owing to its very small ordered Cu magnetic moment. Here, we demonstrate the potential of spherical neutron polarimetry, first, in detecting magnetic structure changes, which are not or weakly manifest in the peak intensity and, second, in deducing the spin arrangement of the so far hypothetic AF3 phase. Our findings suggest two coexisting spin density waves emerging from an accidental degeneracy of the respective states implying a delicate energy balance in the spin Hamiltonian.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021502PMC
http://dx.doi.org/10.1126/sciadv.aay7661DOI Listing

Publication Analysis

Top Keywords

high-temperature incommensurate
8
spherical neutron
8
neutron polarimetry
8
proof elusive
4
elusive high-temperature
4
incommensurate phase
4
phase cuo
4
cuo spherical
4
polarimetry cuo
4
cuo binary
4

Similar Publications

Magnetoplumbites are one of the most broadly studied families of hexagonal ferrites, typically with high magnetic ordering temperatures, making them excellent candidates for permanent magnets. However, magnetic frustration is rarely observed in magnetoplumbites. Herein, the discovery, synthesis, and characterization of the first Mn-based magnetoplumbite, as well as the first magnetoplumbite involving pnictogens (Sb), ASbMnO (A = K or Rb) are reported.

View Article and Find Full Text PDF
Article Synopsis
  • High-temperature superconducting cuprates exhibit unique patterns of spin and charge orders that interact with superconductivity in complex ways.
  • Research using advanced quantum Monte Carlo simulations reveals that these patterns change differently depending on the material and temperature, particularly with varying charge transfer energy and doping levels.
  • The study concludes that charge modulations become less correlated with spin modulations as doping increases, aligning with experimental results, and suggests that high-temperature charge correlations differ from low-temperature stripe orders.
View Article and Find Full Text PDF

Tunable Mirror-Symmetric Type-III Ising Superconductivity in Atomically-Thin Natural Van der Waals Heterostructures.

Adv Mater

December 2024

School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China.

Article Synopsis
  • Van der Waals (vdW) crystals with strong spin-orbit coupling are key for discovering unique 2D superconductors, where new pairing states arise from the combination of various factors like SOC and crystal structure.
  • The study highlights a mirror-symmetry protected Ising pairing state in a heterostructure of SnSe and TaSe, where the arrangement of the lattice helps minimize interference from certain pairing mechanisms.
  • The findings indicate that these vdW heterostructures can enhance the critical temperature under specific magnetic fields, which does not occur in other multilayer configurations due to a loss of mirror symmetry.
View Article and Find Full Text PDF
Article Synopsis
  • 2D materials, such as transition metal-dichalcogenides like MoS, have gained significant attention for their unique layered structures, which lead to distinct physicochemical properties when isolated as single layers compared to their bulk forms.
  • The ability to stack and twist these layers creates new phenomena, such as Moiré patterns, while misfit layer compounds (MLCs) introduce unconventional lattice structures that allow for the formation of nanotubes.
  • The stability and behavior of these nanostructures, particularly under elevated temperatures, are important aspects that remain underexplored, prompting studies using advanced techniques like electron microscopy and synchrotron-based X-ray methods to understand their decomposition and recrystallization processes.
View Article and Find Full Text PDF

Magnetic structure of a multiferroic compound: CuOCl.

Faraday Discuss

November 2024

Institut Néel, CNRS, 25 Av. des Martyrs, Grenoble, France.

The CuOCl compound has been shown to be a high-temperature spin-driven multiferroic system, with a linear magneto-electric coupling. In this paper we propose a complete study of its magnetic structure. We derive the low energy magnetic Hamiltonian using multi-reference configuration interaction and the spin structure using Monte-Carlo simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!