Understanding the multiscale self-assembly of metal-organic polyhedra towards functionally graded porous gels.

Chem Sci

Institute for Integrated Cell-Material Sciences (WPI-iCeMS) , Kyoto University, Yoshida, Sakyo-ku , Kyoto 606-8501 , Japan . Email:

Published: December 2019

Spatial heterogeneity and gradients within porous materials are key for controlling their mechanical properties and mass/energy transport, both in biological and synthetic materials. However, it is still challenging to induce such complexity in well-defined microporous materials such as crystalline metal-organic frameworks (MOFs). Here we show a method to generate a continuous gradient of porosity over multiple length scales by taking advantage of the amorphous nature of supramolecular polymers based on metal-organic polyhedra (MOPs). First, we use time-resolved dynamic light scattering (TRDLS) to elucidate the mechanism of hierarchical self-assembly of MOPs into colloidal gels and to understand the relationship between the MOP concentrations and the architecture of the resulting colloidal networks. These features directly impact the viscoelastic response of the gels and their mechanical strength. We then show that gradients of stiffness and porosity can be created within the gel by applying centrifugal force at the point of colloidal aggregation. These results with the creation of asymmetric and graded pore configuration in soft materials could lead to the emergence of advanced properties that are coupled to asymmetric molecule/ion transport as seen in biological systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012067PMC
http://dx.doi.org/10.1039/c9sc04543kDOI Listing

Publication Analysis

Top Keywords

metal-organic polyhedra
8
transport biological
8
understanding multiscale
4
multiscale self-assembly
4
self-assembly metal-organic
4
polyhedra functionally
4
functionally graded
4
graded porous
4
porous gels
4
gels spatial
4

Similar Publications

The reaction between molybdenum(ii) acetate and 5-aminoisophthalic acid (HIso-NH) afforded [MoO(μ-O)(Iso-NH)], a novel molybdenum(v) metal-organic polyhedron (MOP) with a triangular antiprismatic shape stabilized by intramolecular N-H⋯O hydrogen bonds. The synthesis conditions, particularly the choice of solvent and reaction time, led to the precipitation of the Mo(v)-MOP in five distinct crystalline forms. These forms vary in their packing arrangements, co-crystallized solvent molecules, and counter-cations, with three phases containing dimethylammonium (dma) and the other two containing diethylammonium (dea).

View Article and Find Full Text PDF

Design of cerium dioxide anchored in cobalt-iron layered double hydroxide hollow polyhedra via an ion exchange strategy for the oxygen evolution reaction.

J Colloid Interface Sci

December 2024

State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China. Electronic address:

The oxygen evolution reaction (OER) is hindered by slow kinetics due to its four-electron process, limiting overall efficiency. The rational design of metal-organic framework (MOF)-based nanomaterials is crucial for enhancing the oxygen production rate. Using a straightforward strategy, we synthesized cobalt-iron layered double hydroxide (CoFe-LDH) hollow polyhedra loaded with CeO, with zeolite imidazolate framework-67 (ZIF-67) serving as the precursor.

View Article and Find Full Text PDF

Hydroxamate-Based Metal-Organic Frameworks.

Chemistry

December 2024

Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan.

This mini-review focuses on recent developments in hydroxamate-based metal-organic frameworks (MOFs), which exhibit unique structures and properties distinct from those of carboxylate-based MOFs. Hydroxamates (RCONHO) form MOFs with novel structural motifs and functionalities. In this review, synthetic strategies, structural characteristics, and functional applications of key examples of hydroxamate-based MOFs are described, providing insights into the influence of the hydroxamate ligand on the MOF properties compared to that of the carboxylate-based analogues.

View Article and Find Full Text PDF
Article Synopsis
  • * The researchers used a combination of Ga-MOC and Ni-ethylenediamine complex as a binder to fine-tune the structural evolution of their co-assembled system by adjusting the binder ratio.
  • * Findings show that altering the binder ratio affects the length and properties of the resulting nanostructures, leading to the formation of hydrogels that can turn into crystals autonomously, influenced by the interactions between the components.
View Article and Find Full Text PDF

Coordination-Driven Crosslinking Electrolytes for Fast Lithium-Ion Conduction and Solid-State Battery Applications.

Angew Chem Int Ed Engl

November 2024

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Rechargeable batteries paired with lithium (Li) metal anodes are considered to be promising high-energy storage systems. However, the use of highly reactive Li metal and the formation of Li dendrites during battery operation would cause safety concerns, especially with the employment of highly flammable liquid electrolytes. Herein, a general strategy by engineering coordination-driven crosslinking networks is proposed to achieve high-performance solid polymer electrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!