Management of Human Immunodeficiency Virus Type 2 (HIV-2) infections present unique challenges due to low viral titers, slow disease progression, and poor response to standard antiviral therapies. The need for a nucleic acid assay to detect and quantify HIV-2 virus has led to the development of a number of molecular-based assays for detection and/or quantification of HIV-2 viral RNA in plasma in order to provide laboratory evidence of HIV-2 infection and viral loads for use in treatment decisions. As HIV-2 is less pathogenic and transmissible than HIV-1 and has resistance to several of the antiretroviral drugs, delay of treatment is common. Cross sero-reactivity between HIV-1 and HIV-2 makes it difficult to distinguish between the two viruses based upon serological tests. As such we developed a quantitative reverse transcription PCR (qRT-PCR) assay targeting the 5' long terminal repeat of HIV-2 for detection and quantification of HIV-2 viral RNA in plasma to identify HIV-2 infection and for use in viral load monitoring. Serial dilutions of cultured HIV-2 virus demonstrated a wide dynamic range (10 to 100,000 copies/ml) with excellent reproducibility (standard deviation from 0.12-0.19), linearity (R2 = 0.9994), and a lower limit of detection at 79 copies/ml (NIH-Z). The assay is highly specific for HIV-2 Groups A and B and exhibits no cross reactivity to HIV-1, HBV or HCV. Precision of the assay was demonstrated for the High (Mean = 6.41; SD = 0.12) and Medium (Mean = 4.46; SD = 0.13) HIV-2 positive controls. Replicate testing of clinical specimens showed good reproducibility above 1,000 copies/ml, with higher variability under 1,000 copies/ml. Analysis of 220 plasma samples from HIV-2 infected West African individuals demonstrated significantly lower viral loads than those observed in HIV-1 infections, consistent with results of previous studies. Slightly more than seven percent of clinical samples (7.3%) demonstrated viral loads above 100,000 copies/ml, while 37.3% of samples were undetectable. The high sensitivity, specificity, precision, and linearity of the WRAIR qRT-PCR assay makes it well suited for detection and monitoring of HIV-2 RNA levels in plasma of infected individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048284PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229424PLOS

Publication Analysis

Top Keywords

hiv-2
15
hiv-2 viral
12
viral rna
12
viral loads
12
viral
8
hiv-2 virus
8
quantification hiv-2
8
rna plasma
8
hiv-2 infection
8
infection viral
8

Similar Publications

One of the striking features of human immunodeficiency virus (HIV) is the capsid, a fullerene cone comprised of pleomorphic capsid protein (CA) that shields the viral genome and recruits cofactors. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interactions, HIV-2 CA assembly remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we report high-resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6.

View Article and Find Full Text PDF

Equine Infectious Anemia Virus Cellular Partners Along the Viral Cycle.

Viruses

December 2024

ANSES Animal Health Laboratory, PhEED Unit, 14430 Goustranville, France.

Equine infectious anemia virus (EIAV) is the simplest described within the family, related to the human immunodeficiency viruses (HIV-1 and HIV-2). There is an important interplay between host cells and viruses. Viruses need to hijack cellular proteins for their viral cycle completion and some cellular proteins are antiviral agents interfering with viral replication.

View Article and Find Full Text PDF

Unlabelled: Interlinked interactions between the viral capsid (CA), nucleoporins (Nups), and the antiviral protein myxovirus resistance 2 (MX2/MXB) influence human immunodeficiency virus 1 (HIV-1) nuclear entry and the outcome of infection. Although RANBP2/NUP358 has been repeatedly identified as a critical player in HIV-1 nuclear import and MX2 activity, the mechanism by which RANBP2 facilitates HIV-1 infection is not well understood. To explore the interactions between MX2, the viral CA, and RANBP2, we utilized CRISPR-Cas9 to generate cell lines expressing RANBP2 from its endogenous locus but lacking the C-terminal cyclophilin (Cyp) homology domain and found that both HIV-1 and HIV-2 infections were reduced significantly in RANBP2 cells.

View Article and Find Full Text PDF

The review examines recent advances in the design and synthesis of 1,3-selenazole derivatives since 2000. Various synthetic approaches to 1,3-selenazoles and reaction conditions are discussed. The beneficial properties of 1,3-selenazoles, especially their biological activity, are emphasized.

View Article and Find Full Text PDF

Purpose: Pre-clinical studies have demonstrated direct influences of the autonomic nervous system (ANS) on the immune system. However, it remains unknown if connections between the peripheral ANS and immune system exist in humans and contribute to the development of chronic inflammatory disease. This study had three aims: 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!