Mining activities change the chemical composition of the environment and have negative reflection on people's health and there is no single measure to deal with adverse consequences of mining activities, as each case is specific and needs to be understood and mitigated in a unique way. In this study, the combination of compositional data analysis (CoDA), k-means algorithm, hierarchical cluster analysis applied to reveal the geochemical associations of potentially toxic elements (PTE) in soil of Alaverdi city (Armenia) (Ti, Fe, Ba, Mn, Co, V, Pb, Zn, Cu, Cr, Mo, As). Additionally, to assess PTE-induced health risk, two commonly used approaches were used. The obtained results show that the combination of CoDA and machine learning algorithms allow to identify and describe three geochemical associations of the studied elements: the natural, manmade and hybrid. Moreover, the revealed geochemical associations were linked to the natural pattern of distribution of the element concentrations including the influence of the natural mineralization of the parent rocks, as well as the emission from the copper smelter and urban management related activities. The health risk assessment using the US EPA method demonstrated that the observed contents of studied elements are posing a non-carcinogenic risk to children in the entire territory of the city. In the case of adults, the non-carcinogenic risk was identified in areas situated close to the copper smelter. The Summary pollution index (Zc) values were in line with the results of the US EPA method and indicated that the main residential part of the city was under the hazardous pollution level suggesting the possibility of increase in the overall incidence of diseases among frequently ill individuals, children with chronic diseases and functional disorders of vascular system. The obtained results indicated the need for further in-depth studies with special focus on the synergic effect of PTE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2020.114210 | DOI Listing |
J Hazard Mater
December 2024
State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Microplastic pollution seriously affects global agroecosystems, strongly influencing soil processes and crop growth. Microplastics impact could be size-dependent, yet relevant field experiments are scarce. We conducted a field experiment in a soil-maize agroecosystem to assess interactions between microplastic types and sizes.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095, United States.
Wetland methane emissions are the primary natural contributor to the global methane budget, accounting for approximately one-third of total emissions from natural and anthropogenic sources. Anaerobic oxidation of methane (AOM) serves as the major sink of methane in anoxic wetland sediments, where electron acceptors are present, thereby effectively mitigating its emissions. Nevertheless, environmental controls on electron acceptors, in particular, the ubiquitous iron oxides, involved in AOM are poorly understood.
View Article and Find Full Text PDFEnviron Res
December 2024
College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China. Electronic address:
The ongoing weathering of metal sulfides has substantially posed threats to the eco-systems. For remediating metal sulfides-contaminated soils, phytostabilization is a promising nature-based technique that immobilizing heavy metals (HMs) that dissolved from metal sulfides in the rhizosphere, preventing their leaching and migrating into soil and groundwater. However, the underlying mechanism regarding the mineral-root interaction involving primary metal sulfides such as galena (PbS) during the remediation processes has yet been well studied.
View Article and Find Full Text PDFEnviron Pollut
December 2024
State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
The sulfate-reducing bacteria (SRB)-induced ferrihydrite transformation is an important cause for arsenic (As) contamination in the aquifer near mining area. Calcium carbonate (CaCO) is widespread and has the potential of regulating As fate directly or indirectly. However, the influence of CaCO on ferrihydrite transformation and the associated As mobilization/redistribution in SRB-containing environments remains unclear.
View Article and Find Full Text PDFChemosphere
December 2024
Lab of Public Health, Medical School, University of Patras, GR-26504, Greece. Electronic address:
This ecological study examines cancer mortality rates in 61 rural Greek municipalities, covering in total 7,305,554 person-years from 2000 to 2015, based on the Hellenic Statistical Authority data. Topsoil concentrations of Mn, Ni, Pb, Be, As and Cd in Greek grazing land samples were obtained from the GEMAS (Geochemical Mapping of Agricultural and Grazing land Soil) project. Municipalities of rural regions with population of up to 20,000 people were selected as the study area and were divided into four quartiles, according to their age-specific cancer mortality rates, to identify the most divergent areas of low/high mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!