Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biomass is an important indicator for monitoring vegetation degradation and productivity. This study tests the applicability of Hyperspectral Remote-Sensing in situ measurements for high-precision estimation aboveground biomass (AGB) on regional scales of Khorchin grassland in Inner Mongolia, China. In order to improve prediction accuracy of AGB which is frequently used as an indicator of aboveground net primary productivity (ANPP), this paper combined ground measurement with remote sensing inversion to build the spectral model. The ground normalized difference vegetation index (SOC_NDVI) calculated from ground spectral of grassland vegetation which was measured by a portable visible/NIR hyperspectral spectrometer (SOC 710). Meanwhile, the remote normalized difference vegetation index (TM_NDVI) calculated from remote spectral of grassland vegetation which was measured by Thematic Mapper (TM) from Landsat 8 which launched by National Aeronautics and Space Administration (NASA). According to regression analysis for the relationship between AGB and SOC_NDVI, SOC_NDVI and TM_NDVI, the evaluation model for aboveground biomass was developed (AGB = 12.523×e3.370×(0.462×TM_NDVI+0.413), standard error = 24.74 g m-2, R2 = 0.636, p < 0.001). The model accuracy verification results show that the correlation between the measured value and the predicted value of biomass was better with low model standard error. The model could make up for the lack of timeliness and comprehensiveness of conventional ground biomass survey, and provide technical support for high-precision large-area productivity estimation and ecological degradation diagnosis of regional scale grassland.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048406 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223934 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!