Here we present a new paradigm of free-electron-bound-electron resonant interaction. This concept is based on a recent demonstration of the optical frequency modulation of the free-electron quantum electron wave function (QEW) by an ultrafast laser beam. We assert that pulses of such QEWs correlated in their modulation phase, interact resonantly with two-level systems, inducing resonant quantum transitions when the transition energy ΔE=ℏω_{21} matches a harmonic of the modulation frequency ω_{21}=nω_{b}. Employing this scheme for resonant cathodoluminescence and resonant EELS combines the atomic level spatial resolution of electron microscopy with the high spectral resolution of lasers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.064801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!