Chronic hepatitis C (CHC) infection is associated with increased TIM-3, PD-1 immune checkpoint receptors expression that inhibits adaptive T cells and increases NK cell cytotoxicity against T helper cells, both resulting T cell exhaustion. Elimination of the virus with direct-acting antivirals (DAAs) may modify host immune response via altering these immune checkpoint receptors' expression. We conducted a prospective study to analyze changes in TIM-3, PD-1 and their ligands galectin-9, PD-L1 expression by peripheral blood T cell subpopulations, NK cell subpopulations, and monocytes by multicolor flow cytometry in 14 CHC patients successfully treated with 12 weeks of dasabuvir, ombitasvir, and paritaprevir/ritonavir plus ribavirin. Blood samples were collected before, at the end of treatment, and 12 and 24 weeks later. Sustained virological response (SVR) was associated with increased percentage of peripheral blood CD3+ T and CD8+ cytotoxic T lymphocytes and decreased percentage of NKbright cells. After DAA treatment, decreased TIM-3 expression by CD4+ T cells, by NKbright, and by NKT cells was found. Expression of immune checkpoint molecules' ligand PD-L1 by NK cells and by regulatory T cells and galectin-9 by NK cells and monocytes also decreased significantly at SVR. Our data suggest that DAA treatment not only inhibits viral replication but may alter host adaptive and innate immune responses. A decrease in immune checkpoint molecules and their ligands expression both on adaptive and on innate immune cells may contribute to the recovery of exhausted adaptive immune responses and to sustained virological response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181552PMC
http://dx.doi.org/10.1007/s10238-020-00618-3DOI Listing

Publication Analysis

Top Keywords

immune checkpoint
20
immune
9
cells
9
chronic hepatitis
8
associated increased
8
tim-3 pd-1
8
peripheral blood
8
cell subpopulations
8
sustained virological
8
virological response
8

Similar Publications

Tumor cell-intrinsic signaling pathways can drastically affect the tumor immune microenvironment, promoting tumor progression and resistance to immunotherapy by excluding immune-cell populations from the tumor. Several tumor cell-intrinsic pathways have been reported to modulate myeloid-cell and T-cell infiltration creating "cold" tumors. However, clinical evidence suggests that excluding cytotoxic T cells from the tumor core also mediates immune evasion.

View Article and Find Full Text PDF

Antibodies targeting immune checkpoints, such as PD-1, PD-L1, or CTLA-4, have transformed the treatment of patients with lung cancers. Unprecedented rates of durable responses are achieved in an imperfectly characterized population of patients with metastatic disease. More recently, immune checkpoint inhibitors have been explored in patients with resectable non-small-cell lung cancers.

View Article and Find Full Text PDF

Targeting Cancer-Associated Fibroblasts: Eliminate or Reprogram?

Cancer Sci

January 2025

Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.

Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME). Given their various roles in tumor progression and treatment resistance, CAFs are promising therapeutic targets in cancer. The elimination of tumor-promoting CAFs has been investigated in various animal models to determine whether it effectively suppresses tumor growth.

View Article and Find Full Text PDF

Nanoparticle-Mediated Explosive Anti-PD-L1 Factory Built in Tumor for Advanced Immunotherapy.

Adv Mater

January 2025

Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.

Immunotherapy, particularly immune checkpoint blockade (ICB) therapies, has revolutionized oncology. However, it encounters challenges such as inadequate drug accumulation and limited efficacy against "cold" tumors characterized by lack of T cell infiltration and immunosuppressive microenvironments. Here, a controlled antibody production and releasing nanoparticle (CAPRN) is introduced, designed to augment ICB efficacy by facilitating tumor-targeted antibody production and inducing photodynamic cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!