The development of low-cost bifunctional electrocatalysts with both a high activity and long durability is critical for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The reasonable design and construction of bifunctional electrocatalysts is the key to energy storage and energy conversion technologies. In this study, transition metal carbon nitrides were used as a substitute for the precious metal catalyst, the Ni-Co-BTC (metal organic framework (MOF)) mixed with polyacrylonitrile (PAN) using electrostatic spinning technology to prepare the bamboo-like nanofibers precursor (Ni-Co-BTC@PAN). A series of electrocatalytic materials (NiCo-X@N-CNFs-Ts, T = 700, 800, 900 °C) were synthesized with nitrogen-doped carbon nanofibers coated with NiCo alloy nanoparticles using high temperature carbonization at different temperatures. We studied the effects of different calcination temperatures and different Ni/Co molar ratios of NiCo-X@N-CNFs-Ts (T = 700, 800, 900 °C) on the bifunctional catalytic performance of the ORR/OER. The composite, NiCo-0.8@N-CNFs-800, exhibited a highly doped-N level, uniform NiCo alloy nanoparticle dispersion and decentralized NiCo-Nx active sites, therefore affording an excellent bifunctional electrocatalytic performance. The ORR onset potential on NiCo-0.8@N-CNFs-800 was 0.91 V and the half-wave potential (E1/2) was 0.82 V, the NiCo-0.8@N-CNFs-800 corresponded to the minimum potential of 1.61 V at the current density of 10 mA cm-2 among all of the NiCo-X@N-CNFs-Ts hybrids under the OER condition. The NiCo-0.8@N-CNFs-800 catalyst exhibited a low reversible overpotential of 0.79 V between the ORR (E1/2) and OER (Ej = 10 mA cm-2) with excellent stability, durability and methanol tolerance, even surprisingly superior to the commercial Pt/C and RuO2 catalysts. This work provides a general strategy and useful guidance for the design and development of a variety of multifunctional non-noble metal catalysts for energy applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr10943aDOI Listing

Publication Analysis

Top Keywords

carbon nanofibers
8
alloy nanoparticles
8
bifunctional electrocatalysts
8
nico-x@n-cnfs-ts 700
8
700 800
8
800 900
8
900 °c
8
nico alloy
8
bifunctional
5
bamboo-like nitrogen-doped
4

Similar Publications

Flexible Phase Change Materials with High Energy Storage Density Based on Porous Carbon Fibers.

Polymers (Basel)

December 2024

Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Phase change fibers (PCFs) can effectively store and release heat, improve energy efficiency, and provide a basis for a wide range of energy applications. Improving energy storage density and preserving flexibility are the primary issues in the efficient manufacture and application development of PCFs. Herein, we have successfully fabricated a suite of flexible PCFs with high energy storage density, which use hollow carbon fibers (HCFs) encapsulated phase change materials (PCMs) to provide efficient heat storage and release, thereby enhancing energy efficiency and underpinning a broad range of energy applications.

View Article and Find Full Text PDF

Bimetallic NiCr nanoparticles decorated on carbon nanofibers (NiCr@CNFs) were synthesized through electrospinning and investigated as catalysts for hydrogen generation from the dehydrogenation of sodium borohydride (SBH). Four distinct compositions were prepared, with chromium content in the catalysts ranging from 5 to 25 weight percentage (wt%). Comprehensive characterization confirmed the successful formation of bimetallic NiCr@CNFs.

View Article and Find Full Text PDF

As a sustainable alternative technology to the cost- and energy-intensive Haber-Bosch method, electrochemical nitrogen (N) reduction offers direct conversion of N to NH under ambient conditions. Direct use of noble metals or non-noble metals as electrocatalytic materials results in unsatisfactory electrocatalytic properties because of their low electrical conductivity and stability. Herein, three-dimensional flexible carbon nanofiber (CNF/TiO@CoS) nanostructures were prepared on the surface of CNF by using electrospinning, a hydrothermal method, and in situ growth.

View Article and Find Full Text PDF

Nickel disulfide (NiS) nanoparticles are encapsulated within nitrogen and sulfur co-doped carbon nanosheets, which are grown onto carbon nanofibers to form an array structure (NiS/C@CNF), resulting in a self-supporting film. This encapsulated structure not only prevents the agglomeration of NiS nanoparticles, but also memorably buffers its volume changes during charge/discharge cycles, thereby maintaining structural integrity. The nitrogen and sulfur co-doping enhances electronic conductivity and facilitates the faster ion transport of the carbon backbone, improving the low conductivity of the NiS/C@CNF anodes.

View Article and Find Full Text PDF

Near-Field Direct Write Electrospinning of PET-Carbon Quantum Dot Solutions.

Materials (Basel)

December 2024

Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark.

Electrospinning of polymer material has gained a lot of interest in the past decades. Various methods of electrospinning have been applied for different applications, from needle electrospinning to needleless electrospinning. A relatively new variation of electrospinning, namely near-field electrospinning, has been used to generate well-defined patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!