An electrospun polyurethane scaffold-reinforced zwitterionic hydrogel as a biocompatible device.

J Mater Chem B

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China and Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou, Zhejiang 324000, China and Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.

Published: March 2020

Although zwitterionic hydrogels exhibit excellent hemocompatibility, their extremely low tensile strength is an obstacle for their use in blood-contacting devices. Electrospun fiber scaffold-reinforced zwitterionic hydrogels are a possible solution to overcome the challenges of both mechanical strength and hemocompatibility. In this work, electrospun polyurethane (ePU) fiber scaffold-reinforced sulfobetaine methacrylate (SBMA) hydrogels (SRgels) were prepared. The SRgels exhibited 4.7 ± 0.5 MPa tensile fracture stress, while the interpenetration between the hydrogel and the fiber scaffold remained intact even under 2.8 MPa tensile stress at 3.0 mm mm-1 strain load; this confirms that the SRgels maintain excellent hemocompatibility for both blood cell adhesion and fibrinogen adsorption under physiological dynamic loading and that dynamically structural matching is achieved between the scaffold and the zwitterionic hydrogels. Mechano-induced self-enhancement was also observed after preloading more than 2.0 mm mm-1 tensile strain to resist fracture. In short, the preparation of SRgels can enable zwitterionic hydrogels to meet the requirement for mechanical strength in bio-applications as blood-contacting devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9tb02870fDOI Listing

Publication Analysis

Top Keywords

zwitterionic hydrogels
16
electrospun polyurethane
8
scaffold-reinforced zwitterionic
8
excellent hemocompatibility
8
blood-contacting devices
8
fiber scaffold-reinforced
8
mechanical strength
8
mpa tensile
8
zwitterionic
5
hydrogels
5

Similar Publications

A motion-responsive injectable lubricative hydrogel for efficient Achilles tendon adhesion prevention.

Mater Today Bio

February 2025

Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding, 071000, China.

Achilles tendon is a motor organ that is prone to tissue adhesion during its repair process after rupture. Therefore, developing motion-responsive and anti-adhesive biomaterials is an important need for the repair of Achilles tendon rupture. Here, we report an injectable lubricative hydrogel (ILH) based on hydration lubrication mechanism, which is also motion-responsive based on sol-gel reversible transmission.

View Article and Find Full Text PDF

Developing hydrogels with high conductivity and toughness a facile strategy is important yet challenging. Herein, we proposed a new strategy to develop conductive hydrogels by growing metal dendrites. Water-soluble Sn ions were soaked into the gel and then converted to Sn dendrites an electrochemical reaction; the excessive Sn ions were finally removed by water dialysis, accompanied by dramatic shrinkage of the gel.

View Article and Find Full Text PDF

Wearable heart rate variability analysis system based on ionic conductive hydrogels.

Talanta

January 2025

Academy of Medical Engineering and Translational Medicine, Medical School, Tianjin University, Tianjin, 300072, China; School of Exercise and Health, Tianjin University of Sport, Tianjin, 300211, China. Electronic address:

Developing a wearable device that can continuously and reliably detect and evaluate heart rate variability (HRV) parameters is critical for the diabetic population with cardiac autonomic neuropathy (CAN). In this work, we proposed a zwitterionic conducting hydrogel that enabled a reliable and comfortable wearable device for the evaluation and detection of the autonomic nervous system (ANS). The hydrogel can achieve a strain of 2003 %, an electrical conductivity of 190 mS/m, and is capable of adhering to a variety of materials, including wood, plastic, and glass.

View Article and Find Full Text PDF

High-Efficiency Electrochemiluminescence Biosensor with Antifouling and Antibacterial Functions for Sensitive and Accurate Analysis of Chloramphenicol in Seawater.

Anal Chem

January 2025

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

In marine environmental monitoring, due to the presence of a large number of interfering proteins and bacteria in seawater, it is of great significance to construct an efficient sensing interface with antifouling and antibacterial functions to avoid the aforementioned interferences. On this basis, the zwitterionic hydrogel based on sulfobetaine methacrylate (SBMA) and bovine serum albumin (BSA) was developed as an antifouling and antibacterial coating. The combination of hydration of zwitterions and hydrophilicity of hydrogels endows BSA@PSBMA with good antiadsorption ability, which effectively hinders the adhesion of proteins and bacteria, thereby improving the detection sensitivity of the biosensor.

View Article and Find Full Text PDF

Massive blood loss is the main cause of prehospital trauma-related death, the development of rapid and effective hemostatic materials is imminent. Injectable hydrogels have the advantages of covering irregular bleeding sites and quickly closing the wound. However, its inherent viscosity can easily precipitate tissue adhesion and other complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!