Heavy metal-polluted wetlands could be remediated by harvesting metal accumulating plants, i.e., using phytoextraction. We studied a macrophyte Phragmites australis and assessed its potential to be utilized in the phytoremediation of heavy metal-polluted wetlands, specifically in wadis in the Arabian Peninsula. We sampled six polluted wadi sites and measured Mn, Fe, Ni, Cu, Zn, Cd, and Pb concentrations in the roots, rhizomes, stems, and leaves of P. australis, as well as in sediment and water. We analyzed the correlations between different plant organs, water, and sediment, and calculated the accumulation and translocation of the metals to the plant organs. We found indications for the accumulation of Cd, Zn, and Pb into P. australis and somewhat contradictory indications for the accumulation of Cu. We suggest that P. australis is a good candidate to be utilized in the phytoremediation of heavy metal-polluted wadis in the Arabian Peninsula where the few wadis offer many valuable ecosystem services for urban citizens.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-020-8177-6DOI Listing

Publication Analysis

Top Keywords

arabian peninsula
12
heavy metal-polluted
12
macrophyte phragmites
8
phragmites australis
8
peninsula wadis
8
metal-polluted wetlands
8
utilized phytoremediation
8
phytoremediation heavy
8
wadis arabian
8
plant organs
8

Similar Publications

Background: Of the numerous complications encountered by people with diabetes (PWD), the effect on mental health is concerning. Within mental health, diabetes distress (DD) occurs when a patient has unfavourable emotional stress while managing their condition, which can be managed by coping strategies but are less studied together in Indian settings. So, the present study aimed to determine the proportion of DD and associated factors and coping skills among the PWD.

View Article and Find Full Text PDF

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Background: Artificial Intelligence (AI) is increasingly applied in healthcare to boost productivity, reduce administrative workloads, and improve patient outcomes. In nursing, AI offers both opportunities and challenges. This study explores nurses' perspectives on implementing AI in nursing practice within the context of Jordan, focusing on the perceived benefits and concerns related to its integration.

View Article and Find Full Text PDF

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Controlling the energies of the single-rotor large wind turbine system using a new controller.

Sci Rep

January 2025

Department of Electrical Engineering, College of Engineering, King Khalid University, P.O. Box 394, Abha, 61421, KSA, Saudi Arabia.

In wind energy generation systems, ensuring high energy quality is critical but is often compromised due to the limited performance and durability of conventional regulators. To address this, this work presents a novel controller for managing the machine-side inverter of a single-rotor large wind turbine system using an induction machine-type generator. The proposed controller is designed using proportional, integral, and derivative error-based mechanisms, which fundamentally differ from traditional proportional-integral (PI) regulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!