Reinforcement of the hydroperoxide-eliminating activity in the small and large intestines should prevent associated diseases. We previously isolated a lactic acid bacterium, Pediococcus pentosaceus Be1 that facilitates a 2-electron reduction of hydrogen peroxide to water. In this study, we successfully isolated an alternative lactic acid bacterium, Lactobacillus plantarum P1-2, that can efficiently reduce environmental alkyl hydroperoxides and fatty acid hydroperoxides to their corresponding hydroxyl derivatives through a 2-electron reduction. Each strain exhibited a wide concentration range with regard to the environmental reducing activity for each hydroperoxide. Given this, the two lactic acid bacteria were orally administered to an oxygen-sensitive short-lived nematode mutant, and this resulted in a significant expansion of its lifespan. This observation suggests that P. pentosaceus Be1 and L. plantarum P1-2 inhibit internal oxidative stress. To determine the specific organs involved in this response, we performed a similar experiment in rats, involving induced lipid peroxidation by iron-overloading. We observed that only L. plantarum P1-2 inhibited colonic mucosa lipid peroxidation in rats with induced oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7046221PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215113PLOS

Publication Analysis

Top Keywords

lactic acid
16
plantarum p1-2
12
acid bacteria
8
environmental alkyl
8
fatty acid
8
acid hydroperoxides
8
acid bacterium
8
pentosaceus be1
8
2-electron reduction
8
oxidative stress
8

Similar Publications

The objective of this study was to investigate the effect of the () SS18-50 (an isolate with favorable probiotic properties following space traveling) on dextran sulfate sodium (DSS)-induced colitis in mice. Male ICR mice were randomly assigned to one of six groups: a control group, a model group, and four intervention groups comprising the isolate (SS18-50-L and SS18-50-H) and the wild type (GS18-L and GS18-H) strains. The model group and the intervention groups were administered a 3.

View Article and Find Full Text PDF

Rainbow trout () is a freshwater fish susceptible to chemical and microbial spoilage, limiting its shelf life. This study aimed to enhance and extend the rainbow trout fillets' shelf life stored at 4°C ± 1°C through an immersion treatment using ultrasound-assisted, defatted pine nut ( Wallich) extracts at concentrations of 1% and 2% (w/v), compared to the control group (0% pine nut). Evaluations were conducted at storage intervals of 0, 4, 8, 12, 16, and 20 days.

View Article and Find Full Text PDF

The genus , commonly found in fermented foods, is a significant group of lactic acid bacteria (LAB) with potential probiotic properties. Several strains have been proposed as probiotics due to their biotechnological capabilities. However, a few strains may exhibit opportunistic pathogenic behavior, which restricts the widespread use of all strains in food applications.

View Article and Find Full Text PDF

Solid-state polymer electrolytes (SPEs) are increasingly favored over liquid electrolytes for emerging energy storage devices due to their safety features, enhanced stability, and multifunctionality. Minor solvents (such as water) are often introduced unintentionally or intentionally into SPEs. Although it can significantly affect SPEs' electrochemical and mechanical properties, the fundamental role of such solvent content has rarely been studied.

View Article and Find Full Text PDF

Comparison of the effects of two soy waste-based culture media on the technological properties of 90 as adjunct culture in miniature Cremoso cheese.

J Dairy Res

January 2025

Facultad de Ingeniería Química (FIQ-UNL), Instituto de Lactología Industrial (CONICET), Santiago del Estero 2829, Santa Fe, Argentina.

We compared the effects of two waste-based culture media (M1 and M2) on the technological properties of (L90) for its application as a secondary culture in Cremoso cheese. The following parameters were studied at different ripening times: pH (7, 20, and 40 d), microbiological counts, carbohydrates and organic acids (7 and 40 d), moisture, fat, protein and volatile compounds (40 d). The viability and the metabolic performance of the strain in cheeses were also verified along ripening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!