Global mapping of freshwater nutrient enrichment and periphyton growth potential.

Sci Rep

School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.

Published: February 2020

Periphyton (viz. algal) growth in many freshwater systems is associated with severe eutrophication that can impair productive and recreational use of water by billions of people. However, there has been limited analysis of periphyton growth at a global level. To predict where nutrient over-enrichment and undesirable periphyton growth occurs, we combined several databases to model and map global dissolved and total nitrogen (N) and phosphorus (P) concentrations, climatic and catchment characteristics for up to 1406 larger rivers that were analysed between 1990 and 2016. We predict that 31% of the global landmass contained catchments may exhibit undesirable levels of periphyton growth. Almost three-quarters (76%) of undesirable periphyton growth was caused by P-enrichment and mapped to catchments dominated by agricultural land in North and South America and Europe containing 1.7B people. In contrast, undesirable periphyton growth due to N-enrichment was mapped to parts of North Africa and parts of the Middle East and India affecting 280 M people. The findings of this global modelling approach can be used by landowners and policy makers to better target investment and actions at finer spatial scales to remediate poor water quality owing to periphyton growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7046692PMC
http://dx.doi.org/10.1038/s41598-020-60279-wDOI Listing

Publication Analysis

Top Keywords

periphyton growth
28
undesirable periphyton
12
periphyton
8
growth
8
global
5
global mapping
4
mapping freshwater
4
freshwater nutrient
4
nutrient enrichment
4
enrichment periphyton
4

Similar Publications

Does periphyton turn less palatable under grazing pressure?

ISME Commun

January 2024

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P.R. China.

Periphyton acts as an important primary producer in stream food webs with bottom-up grazing pressure and is also subject to effects of top-down grazing pressure. However, the underlying mechanisms of these interactions remain unclear. In this study we conducted a mesocosm experiment to explore the periphyton response to grazing pressure by the freshwater snail in relation to food quality indicated by polyunsaturated fatty acid (PUFA) biomarkers, including eicosapentaenoic acid (20:5n3) and the 22C fatty acid docosahexaenoic acid (22:6n3), which are essential for cell growth and reproduction and cannot be synthesized by most consumers of periphyton.

View Article and Find Full Text PDF

Dietary exposure of stormwater contaminants in biofilm to two freshwater macroinvertebrates.

Sci Total Environ

December 2024

Department of Biology, University of Waterloo, 200 University Avenue W., Waterloo, Ontario N2L 3G1, Canada. Electronic address:

Aquatic habitats in urban environments are exposed to complex contaminant mixtures that may harm aquatic biota. The impact of contaminant transfer from contaminated biofilm through aquatic food webs is still understudied, as is the current state of knowledge on dietary exposure of urban contaminants to biota residing in stormwater ponds. Our overall objective was to characterize urban pesticide accumulation in a common aquatic food source (biofilm) in stormwater ponds and to investigate the potential toxicity of that food source by testing the responses of two freshwater macroinvertebrates to experimental exposure.

View Article and Find Full Text PDF

Biotechnological approaches for suppressing Microcystis blooms: insights and challenges.

Appl Microbiol Biotechnol

September 2024

Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.

Cyanobacterial harmful algal blooms, particularly those dominated by Microcystis, pose significant ecological and health risks worldwide. This review provides an overview of the latest advances in biotechnological approaches for mitigating Microcystis blooms, focusing on cyanobactericidal bacteria, fungi, eukaryotic microalgae, zooplankton, aquatic plants, and cyanophages. Recently, promising results have been obtained using cyanobactericidal bacteria: not through the inoculation of cultured bacteria, but rather by nurturing those already present in the periphyton or biofilms of aquatic plants.

View Article and Find Full Text PDF

Migration, transformation of arsenic, and pollution controlling strategies in paddy soil-rice system: A comprehensive review.

Sci Total Environ

November 2024

Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China. Electronic address:

Arsenic pollution in paddy fields has become a public concern by seriously threatening rice growth, food security and human health. In this review, we delve into the biogeochemical behaviors of arsenic in paddy soil-rice system, systemically revealing the complexity of its migration and transformation processes, including the release of arsenic from soil to porewater, uptake and translocation of arsenic by rice plants, as well as transformation of arsenic species mediated by microorganism. Especially, microbial processes like reduction, oxidation and methylation of arsenic, and the coupling of arsenic with carbon, iron, sulfur, nitrogen cycling through microbes and related mechanisms were highlighted.

View Article and Find Full Text PDF

The amount of genetic diversity within a population can affect ecological processes at population, community, and ecosystem levels. However, the magnitude, consistency, and scope of these effects are largely unknown. To investigate these issues, we conducted two experiments manipulating the amount of genetic diversity and environmental factors in larval amphibians.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!