Background: Individuals with superior semi-circular canal syndrome often describe vestibular symptoms elicited by loud sounds, as well as other pressure-induced symptoms. They also often report other symptoms, including autophony, hyperacusis, cognitive dysfunction, spatial disorientation, anxiety and migraine headaches. Symptoms occur due to the presence of a 'third window' created by the dehiscence of the superior semi-circular canal. This case report describes a minimally invasive technique to provide soft reinforcement of the round window.
Case Report: Our patient underwent a permeatal procedure whereby the tympanic membrane was raised to allow inspection of the middle ear. The round window niche was identified and the round window membrane was reinforced with fat. The mucosa of the bony meatus leading to the round window was then disrupted before the application of a double layer of perichondrium to allow further reinforcement.
Conclusion: The case provides support for the use of 'soft reinforcement' as a simple and effective technique to treat the symptoms of superior canal dehiscence syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0022215120000353 | DOI Listing |
J Neurol Surg B Skull Base
February 2025
Department of Radiology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Türkiye.
In the present study, we investigated the round window (RW) and neighboring anatomical structures using temporal computed tomography (CT) which are important for cochlear implant (CI) electrodes. In this retrospective study, the temporal CT images of 112 adult patients (45 males and 67 females) were evaluated. We classified mastoid pneumatization, and measured RW diameter, RW-carotid canal (CC) distance, RW-facial nerve mastoid segment (FNMS) distance, RW-pyramidal eminence distance, RW-jugular bulb (JB) distance, and RW-internal acoustic canal (IAC) distance.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China.
Noise-induced hearing loss (NIHL) results from prolonged exposure to intense noise, causing damage to sensory outer hair cells (OHCs) and spiral ganglion neurons (SGNs). The blood labyrinth barrier (BLB) hinders systemic drug delivery to the inner ear. This study applied a retro-auricular round window membrane (RWM) method to bypass the BLB, enabling the transport of macromolecular proteins into the inner ear.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy, 54000, France.
Background And Purpose: To evaluate various anatomical parameters and their relationship to chorda tympani nerve (CTN) injury and round window (RW) access during cochlear implantation.
Materials And Methods: Ultra-high-resolution CT images of 66 patients were retrospectively reviewed and compared with operative reports. The facial recess and the round window were analyzed, mainly using the chorda-facial angle (CFA), the width of the facial recess, the CTN-tympanic annulus distance, the RW-mastoid portion of the facial nerve angle, and the type of RW.
Eur Arch Otorhinolaryngol
January 2025
Vrije Universiteit Brussel, Brussels Health Centre, Brussels, Belgium.
Purpose: Cochlear implants (CI) are the most successful bioprosthesis in medicine probably due to the tonotopic anatomy of the auditory pathway and of course the brain plasticity. Correct placement of the CI arrays, respecting the inner ear anatomy are therefore important. The ideal trajectory to insert a cochlear implant array is defined by an entrance through the round window membrane and continues as long as possible parallel to the basal turn of the cochlea.
View Article and Find Full Text PDFElife
January 2025
Department of Mechanical Engineering, University of Rochester, Rochester, United States.
We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!