Background: Verticillium wilt of cotton is a serious soil-borne disease that causes a substantial reduction in cotton yields. A previous study showed that the endophytic fungus Chaetomium globosum CEF-082 could control Verticillium wilt of cotton, and induce a defense response in cotton plants. However, the comprehensive molecular mechanism governing this response is not yet clear.
Results: To study the signalling mechanism induced by CEF-082, the transcriptome of cotton seedlings pretreated with CEF-082 was sequenced. The results revealed 5638 DEGs at 24 h post inoculation with CEF-082, and 2921 and 2153 DEGs at 12 and 48 h post inoculation with Verticillium dahliae, respectively. At 24 h post inoculation with CEF-082, KEGG enrichment analysis indicated that the DEGs were enriched mainly in the plant-pathogen interaction, MAPK signalling pathway-plant, flavonoid biosynthesis, and phenylpropanoid biosynthesis pathways. There were 1209 DEGs specifically induced only in cotton plants inoculated with V. dahliae in the presence of the biocontrol fungus CEF-082, and not when cotton plants were only inoculated with V. dahliae. GO analysis revealed that these DEGs were enriched mainly in the following terms: ROS metabolic process, HO metabolic process, defense response, superoxide dismutase activity, and antioxidant activity. Moreover, many genes, such as ERF, CNGC, FLS2, MYB, GST and CML, that regulate crucial points in defense-related pathways were identified and may contribute to V. dahliae resistance in cotton. These results provide a basis for understanding the molecular mechanism by which the biocontrol fungus CEF-082 increases the resistance of cotton to Verticillium wilt.
Conclusions: The results of this study showed that CEF-082 could regulate multiple metabolic pathways in cotton. After treatment with V. dahliae, the defense response of cotton plants preinoculated with CEF-082 was strengthened.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047391 | PMC |
http://dx.doi.org/10.1186/s12870-019-2221-0 | DOI Listing |
Dev Cell
December 2024
College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China. Electronic address:
Strigolactone (SL) is a plant hormone required for plant development. DWARF53 (D53) functions as a transcription repressor in SL signaling. However, the role of D53 in cotton (Gossypium hirsutum, Gh) fiber development remains unclear.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
The WRINKLED1 (WRI1) transcription factor controls carbon flow in plants through regulating the expression of glycolysis and fatty acid biosynthesis genes. The role of Gossypium hirsutum WRINKLED1 (GhWRI1) in seed-oil accumulation still needs to be explored. Multiple sequence alignment of WRI1 proteins confirmed the presence of two conserved AP2 domains.
View Article and Find Full Text PDFNat Commun
December 2024
National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
Although epigenetic modification has long been recognized as a vital force influencing gene regulation in plants, the dynamics of chromatin structure implicated in the intertwined transcriptional regulation of duplicated genes in polyploids have yet to be understood. Here, we document the dynamic organization of chromatin structure in two subgenomes of allotetraploid cotton (Gossypium hirsutum) by generating 3D genomic, epigenomic and transcriptomic datasets from 12 major tissues/developmental stages covering the life cycle. We systematically identify a subset of genes that are closely associated with specific tissue functions.
View Article and Find Full Text PDFPlant Sci
December 2024
Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, Anhui 239000, China. Electronic address:
The shift from vegetative to reproductive growth is an important developmental transition that affects flowering and maturation, architecture, and ecological adaptability in plants. The florigen-antiflorigen system universally controls flowering and plant architecture, and changes to the ratio of these components alter this transition and disrupt growth. The genes FT (FLOWERING LOCUS T), encoding the florigen protein FT, and CETS [CENTRORADIALIS (CEN)/TERMINAL FLOWER1 (TFL1)/SELF-PRUNING (SP)], encoding antiflorigen proteins, have opposing roles.
View Article and Find Full Text PDFJ Econ Entomol
December 2024
Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA.
Thrips (Thysanoptera: Thripidae) can injure seedling cotton (Gossypium hirsutum L.), soybean (Glycine max (L.) Merr.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!