Blood flow changes in response to exercise have been attributed, among other factors, to the effect of vasodilators factors on the microvasculature, suggesting a close relationship between small blood vessels and conducting arteries. The main purpose of this study was to determine the relationship between the changes in near infrared spectroscopy (NIRS)-derived total haemoglobin ([tHb]) and muscle oxygen saturation (SmO) signals and femoral artery blood flow in response to resistance exercise at fast- and slow-velocity muscle contraction. The study randomised crossover design included twelve participants. NIRS and blood flow measurements were continuously monitored before, during, and 5 min after the exercise protocol. There was a significant correlation between [tHb] reperfusion slope ([tHb]) and peak blood flow (BF) after slow- and fast-velocity muscle contraction (r = 0.83, p = 0.0008 and r = 0.72, p = 0.0080, respectively). No significant correlation existed between the SmO reperfusion slope (SmO) and BF after both slow- and fast-velocity muscle contraction exercise (r = -0.46, p = 0.1253 and r = 0.33, p = 0.2841, respectively). This study demonstrated a strong relationship between the NIRS-derived [tHb] and Doppler ultrasound BF during the recovery period of dynamic resistance exercise at both slow- and fast-velocity contraction.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02640414.2020.1733774DOI Listing

Publication Analysis

Top Keywords

blood flow
20
muscle contraction
12
slow- fast-velocity
12
total haemoglobin
8
resistance exercise
8
reperfusion slope
8
fast-velocity muscle
8
blood
6
muscle
5
flow
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!