Infrared light (IR) detection principles limited by poor photoresponsivity and sparse photogenerated carrier make them impossible to directly applied in flexible IR sensing field attributed to low π-π conjugation effect, thick P-N junction, and harsh band gap, of which IR self-powered electronic skin (e-skin) strongly relies on the essential property of exotic photosensitive-exciting materials, hardly any flexible organic polymer or nanocomposites. Here, an innovative IR self-powered principle is reported that outstanding piezoelectric effect of poly(vinylidene fluoride) nanofibers (PVDF NFs) is driven by microcrystals' volume expansion caused by the solid-solid phase transition of PVDF/multiwalled carbon nanotubes (MWCNTs)/highly elastic phase change polymer (HEPCP) (PMH) nanocomposites due to MWCNT's excellent IR photoabsorption and thermal conversion capabilities. A flexible IR-sensitive nanocomposite is successfully developed employing PVDF/HEPCP NFs as the framework of a three-dimensional network structure wrapped by the MWCNT/HEPCP nanocomposite. The 33, 50, and 60 wt % PMH nanocomposites are demonstrated cyclic, IR-regulated on/off piezoelectric sensitivity of 889.7, 977.6, and 493.8 mV/(mW·mm) at IR powers of 5.3 mW/mm, respectively. Furthermore, IR self-powered e-skin has been developed successfully and realized an accurate IR stimulus-sensing location due to the sensitivity, which depends on the size of the sensing area. This innovative strategy provides a new route to the fundamental science and applications of flexible IR self-powered devices, such as e-skin, artificial vision, soft robots, active surveillance sensors, etc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b21766 | DOI Listing |
Clin Oncol (R Coll Radiol)
December 2024
Radiation Oncology Network, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. Electronic address:
Aims: Unresectable cutaneous squamous cell cancer of the head and neck (HNcSCC) poses treatment challenges in elderly and comorbid patients. Radiation therapy (RT) is often employed for locoregional control. This study aimed to determine progression-free survival (PFS) and overall survival (OS) outcomes achieved with upfront RT in unresectable HNcSCC.
View Article and Find Full Text PDFOtol Neurotol
February 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Donders Center for Neuroscience, Radboud University Medical Center, Radboud University, Nijmegen, the Netherlands.
Objective: To compare the 3-year outcomes of the modified minimally invasive Ponto surgery (m-MIPS) to both the original MIPS (o-MIPS) and linear incision technique with soft tissue preservation (LIT-TP) for inserting bone-anchored hearing implants (BAHIs).
Study Design: Prospective study with three patient groups: m-MIPS, o-MIPS, and LIT-TP.
Setting: Tertiary referral center.
Otol Neurotol
February 2025
Department of Otolaryngology-Head and Neck Surgery.
Objective: To compare fall risk scores of hearing aids embedded with inertial measurement units (IMU-HAs) and powered by artificial intelligence (AI) algorithms with scores by trained observers.
Study Design: Prospective, double-blinded, observational study of fall risk scores between trained observers and those of IMU-HAs.
Setting: Tertiary referral center.
STAR Protoc
January 2025
Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA. Electronic address:
Tumor Treating Fields (TTFields) are electric fields clinically approved for cancer treatment, delivered via arrays attached to the patient's skin. Here, we present a protocol for applying TTFields to torso orthotopic and subcutaneous mouse tumor models using the inovivo system. We guide users on proper system component connections, study protocol design, mouse fur depilation, array application, and treatment condition adjustment and monitoring.
View Article and Find Full Text PDFAdv Skin Wound Care
January 2025
Abigail C. Judge, BS, is Medical Student, School of Medicine, Yale University, New Haven, Connecticut, United States. Amir H. Tahernia, MD, is Surgeon, Olympia Medical Center and Cedars-Sinai Medical Center, Los Angeles, California.
Background: Hidradenitis suppurativa is a chronic, inflammatory disease involving the pilosebaceous unit of apocrine gland-bearing skin. Wide surgical excision, wherein margins extend beyond active lesions, is considered curative.
Objective: To evaluate the safety and efficacy of wide surgical excision in the treatment of hidradenitis suppurativa.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!