Self-Powered Infrared-Responsive Electronic Skin Employing Piezoelectric Nanofiber Nanocomposites Driven by Microphase Transition.

ACS Appl Mater Interfaces

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China.

Published: March 2020

Infrared light (IR) detection principles limited by poor photoresponsivity and sparse photogenerated carrier make them impossible to directly applied in flexible IR sensing field attributed to low π-π conjugation effect, thick P-N junction, and harsh band gap, of which IR self-powered electronic skin (e-skin) strongly relies on the essential property of exotic photosensitive-exciting materials, hardly any flexible organic polymer or nanocomposites. Here, an innovative IR self-powered principle is reported that outstanding piezoelectric effect of poly(vinylidene fluoride) nanofibers (PVDF NFs) is driven by microcrystals' volume expansion caused by the solid-solid phase transition of PVDF/multiwalled carbon nanotubes (MWCNTs)/highly elastic phase change polymer (HEPCP) (PMH) nanocomposites due to MWCNT's excellent IR photoabsorption and thermal conversion capabilities. A flexible IR-sensitive nanocomposite is successfully developed employing PVDF/HEPCP NFs as the framework of a three-dimensional network structure wrapped by the MWCNT/HEPCP nanocomposite. The 33, 50, and 60 wt % PMH nanocomposites are demonstrated cyclic, IR-regulated on/off piezoelectric sensitivity of 889.7, 977.6, and 493.8 mV/(mW·mm) at IR powers of 5.3 mW/mm, respectively. Furthermore, IR self-powered e-skin has been developed successfully and realized an accurate IR stimulus-sensing location due to the sensitivity, which depends on the size of the sensing area. This innovative strategy provides a new route to the fundamental science and applications of flexible IR self-powered devices, such as e-skin, artificial vision, soft robots, active surveillance sensors, etc.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b21766DOI Listing

Publication Analysis

Top Keywords

electronic skin
8
pmh nanocomposites
8
self-powered
5
self-powered infrared-responsive
4
infrared-responsive electronic
4
skin employing
4
employing piezoelectric
4
piezoelectric nanofiber
4
nanocomposites
4
nanofiber nanocomposites
4

Similar Publications

Outcomes With Radiation Therapy as Primary Treatment for Unresectable Cutaneous Head and Neck Squamous Cell Carcinoma.

Clin Oncol (R Coll Radiol)

December 2024

Radiation Oncology Network, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. Electronic address:

Aims: Unresectable cutaneous squamous cell cancer of the head and neck (HNcSCC) poses treatment challenges in elderly and comorbid patients. Radiation therapy (RT) is often employed for locoregional control. This study aimed to determine progression-free survival (PFS) and overall survival (OS) outcomes achieved with upfront RT in unresectable HNcSCC.

View Article and Find Full Text PDF

Objective: To compare the 3-year outcomes of the modified minimally invasive Ponto surgery (m-MIPS) to both the original MIPS (o-MIPS) and linear incision technique with soft tissue preservation (LIT-TP) for inserting bone-anchored hearing implants (BAHIs).

Study Design: Prospective study with three patient groups: m-MIPS, o-MIPS, and LIT-TP.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Objective: To compare fall risk scores of hearing aids embedded with inertial measurement units (IMU-HAs) and powered by artificial intelligence (AI) algorithms with scores by trained observers.

Study Design: Prospective, double-blinded, observational study of fall risk scores between trained observers and those of IMU-HAs.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Protocol for applying Tumor Treating Fields in mouse models of cancer using the inovivo system.

STAR Protoc

January 2025

Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA. Electronic address:

Tumor Treating Fields (TTFields) are electric fields clinically approved for cancer treatment, delivered via arrays attached to the patient's skin. Here, we present a protocol for applying TTFields to torso orthotopic and subcutaneous mouse tumor models using the inovivo system. We guide users on proper system component connections, study protocol design, mouse fur depilation, array application, and treatment condition adjustment and monitoring.

View Article and Find Full Text PDF

Hidradenitis Suppurativa: Radical Surgical Excisions with Staged Reconstructions: A Single-Surgeon Retrospective Review of 71 Patients.

Adv Skin Wound Care

January 2025

Abigail C. Judge, BS, is Medical Student, School of Medicine, Yale University, New Haven, Connecticut, United States. Amir H. Tahernia, MD, is Surgeon, Olympia Medical Center and Cedars-Sinai Medical Center, Los Angeles, California.

Background: Hidradenitis suppurativa is a chronic, inflammatory disease involving the pilosebaceous unit of apocrine gland-bearing skin. Wide surgical excision, wherein margins extend beyond active lesions, is considered curative.

Objective: To evaluate the safety and efficacy of wide surgical excision in the treatment of hidradenitis suppurativa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!