Graphene oxide (GO) is a promising 2D material for adsorbents and membranes, in particular, for the CO separation process. However, CO diffusion and sorption in GO and its layered structures are still not well understood because of its heterogeneous structure. Here we report CO sorption in GO and its derivatives (e.g., reduced GO (rGO)) in powders and films. These CO sorption behaviors reveal that GO is highly CO-philic via complex CO-functional-group-surface interactions, as compared with graphite and rGOs. Even in highly interlocked, lamellar GO films, CO molecules above a certain threshold pressure can diffuse into GO interlayers, causing GO films to swell and leading to dramatic increases in CO sorption. Intercalated water in GO interlayers can be removed by preferential CO sorption without any changes in the GO chemical structure. This finding helps to explain the origin of CO affinity with GO and has implications for preparing anhydrous GO assemblies for various applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c00204 | DOI Listing |
Food Chem
December 2024
School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield Dublin 4, Ireland. Electronic address:
Graphene oxide (GO), renowned for its two-dimensional structure and exceptional fluorescence quenching capabilities, is a preferred choice for the construction of fluorescence biosensors. As the sensitivity demands for these sensors escalate, enhancing the fluorescence quenching performance of GO and reducing background fluorescence become paramount to optimize the sensor sensitivity. In this study, the use of cold plasma (CP) treatment with glucose solution as a reducing agent to refine GO into reduced graphene oxide (r-GO) with optimal fluorescence quenching abilities was explored.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan.
In recent years, the advancement of high-frequency communication systems, particularly 5G and future 6G technologies, has increased the need for substrates that minimize signal loss and electromagnetic interference. Glass substrates are highly desirable for these applications due to their low dielectric constant and excellent surface smoothness. However, conventional electroless Cu plating methods struggle to achieve strong adhesion between Cu and the smooth, low-polarity surface of glass, making this an important challenge to address.
View Article and Find Full Text PDFSe Pu
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200082, China.
As emerging contaminants, antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs) pose a serious threat to human health and ecological security. Here, a reduced graphene oxide and g-CN co-doped copper ferrite (rGO-CNCF) were synthesized. The composite material was characterized using XRD, FTIR, XPS, SEM-EDS, TEM, and DRS analysis methods, and a visible-light-assisted rGO-CNCF-activated PMS system was constructed for the removal of ARB and ARGs in water.
View Article and Find Full Text PDFWater Res
December 2024
Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
Metol (MTO), a commonly used photographic developer, has become an environmental pollutant due to its extensive use and subsequent release into water sources. The accumulation of MTO poses significant risks, including aquatic toxicity and potential bioaccumulation, leading to adverse effects on ecosystems. To address these environmental challenges, we developed a La₂NiO combined with graphene oxide (La₂NiO₄@GO) nanocomposite modified glassy carbon electrode (GCE) for the ultrasensitive detection of MTO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!