Elucidating the Effect of Etching Time Key-Parameter toward Optically and Electrically-Active Silicon Nanowires.

Nanomaterials (Basel)

Laboratory of Nanomaterials and Systems for Renewable Energies (LaNSER), Research and Technology Center of Energy, Techno-Park Borj-Cedria, Bp 95, Hammam-Lif, Tunis 2050, Tunisia.

Published: February 2020

In this work, vertically aligned silicon nanowires (SiNWs) with relatively high crystallinity have been fabricated through a facile, reliable, and cost-effective metal assisted chemical etching method. After introducing an itemized elucidation of the fabrication process, the effect of varying etching time on morphological, structural, optical, and electrical properties of SiNWs was analysed. The NWs length increased with increasing etching time, whereas the wires filling ratio decreased. The broadband photoluminescence (PL) emission was originated from self-generated silicon nanocrystallites (SiNCs) and their size were derived through an analytical model. FTIR spectroscopy confirms that the PL deterioration for extended time is owing to the restriction of excitation volume and therefore reduction of effective light-emitting crystallites. These SiNWs are very effective in reducing the reflectance to 9-15% in comparison with Si wafer. I-V characteristics revealed that the rectifying behaviour and the diode parameters calculated from conventional thermionic emission and Cheung's model depend on the geometry of SiNWs. We deduce that judicious control of etching time or otherwise SiNWs' length is the key to ensure better optical and electrical properties of SiNWs. Our findings demonstrate that shorter SiNWs are much more optically and electrically active which is auspicious for the use in optoelectronic devices and solar cells applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152846PMC
http://dx.doi.org/10.3390/nano10030404DOI Listing

Publication Analysis

Top Keywords

etching time
16
silicon nanowires
8
optical electrical
8
electrical properties
8
properties sinws
8
sinws
6
time
5
elucidating etching
4
time key-parameter
4
key-parameter optically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!