We present a freeform-segmented reflector-based microfluidic system for conventional Raman and Surface-Enhanced Raman Scattering (SERS) analysis. The segmented reflector is directly designed by a numerical approach. The polymer-based Raman system strongly suppresses the undesirable background because it enables confocal detection of Raman scattering through the combination of a freeform reflector and a microfluidic chip. We perform systematic simulations using non-sequential ray tracing with the Henyey-Greenstein model to assess the Raman scattering behavior of the substance under test. We fabricate the freeform reflector and the microfluidic chip by means of ultra-precision diamond turning and laser cutting respectively. We demonstrate the confocal behavior by measuring the Raman spectrum of ethanol. Besides, we calibrate the setup by performing Raman measurements on urea and potassium nitrate solutions with different concentrations. The detection limit of our microfluidic system is approximately 20 mM according to the experiment. Finally, we implement a SERS microfluidic chip and discriminate 100 µM urea and potassium nitrate solutions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085544 | PMC |
http://dx.doi.org/10.3390/s20051250 | DOI Listing |
Micromachines (Basel)
May 2024
The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
By leveraging the benefits of a high energy density, miniaturization and integration, acoustic-wave-driven micromotors have recently emerged as powerful tools for microfluidic actuation. In this study, a Lamb-wave-driven micromotor is proposed for the first time. This motor consists of a ring-shaped Lamb wave actuator array with a rotor and a fluid coupling layer in between.
View Article and Find Full Text PDFHerein we report an electronically controlled tunable fiber-optic attenuator that leverages the microfluidic electro-wetting effect, which enables a fine-tuning of the solid-liquid interface wetting angle to control the micro-reflector, thus regulating the lens fiber coupling efficiency. Theoretical calculations indicated an optical attenuation regulation effect of 0-45.0 dB in the voltage range of 0-30.
View Article and Find Full Text PDFThis study presented a platform of multiplex fluorescence detection of single-cell droplet microfluidics with demonstrative applications in quantifying protein expression levels. The platform of multiplex fluorescence detection mainly included optical paths adopted from conventional microscopy enabling the generation of three optical spots from three laser sources for multiple fluorescence excitation and capture of multiple fluorescence signals by four photomultiplier tubes. As to platform characterization, microscopic images of three optical spots were obtained where clear Gaussian distributions of intensities without skewness confirmed the functionality of the scanning lens, while the controllable distances among three optical spots validated the functionality of fiber collimators and the reflector lens.
View Article and Find Full Text PDFA dynamically reconfigurable liquid crystal (LC) photonic device is an important research field in modern LC photonics. We present a type of continuously tunable distributed Bragg reflector (DBR) based on LC polymer composites modulated via a novel optofluidic method. LC-templated DBR films are fabricated by photopolymerization under visible standing wave interference.
View Article and Find Full Text PDFThe integration of micro-optics in lab on a chip (LOCs) devices is crucial both for increasing the solid angle of acquisition and reducing the optical losses, aiming at improving the signal-to-noise ratio (SNR). In this work, we present the thriving combination of femtosecond laser irradiation followed by chemical etching (FLICE) technique with CO laser polishing and inkjet printing to fabricate in-plane, 3D off-axis reflectors, featuring ultra-high optical quality (RMS ∼3 nm), fully integrated on fused silica substrates. Such micro-optic elements can be used both in the excitation path, focusing an incoming beam in 3D, and in the acquisition branch, harvesting the optical signal coming from a specific point in space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!