Breast cancer (BC) is the most common cancer in women worldwide. Approximately 70-80% of BCs express estrogen receptors (ER), which predict the response to endocrine therapy (ET), and are therefore hormone receptor-positive (HR+). Endogenous cannabinoids together with cannabinoid receptor 1 and 2 (CB1, CB2) constitute the basis of the endocannabinoid system. Interactions of cannabinoids with hypothalamic-pituitary-gonadal axis hormones are well documented, and two studies found a positive correlation between peak plasma endogenous cannabinoid anandamide with peak plasma 17β-estradiol, luteinizing hormone and follicle-stimulating hormone levels at ovulation in healthy premenopausal women. Do cannabinoids have an effect on HR+ BC? In this paper we review known and possible interactions between cannabinoids and specific HR+ BC treatments. In preclinical studies, CB1 and CB2 agonists (i.e., anandamide, THC) have been shown to inhibit the proliferation of ER positive BC cell lines. There is less evidence for antitumor cannabinoid action in HR+ BC in animal models and there are no clinical trials exploring the effects of cannabinoids on HR+ BC treatment outcomes. Two studies have shown that tamoxifen and several other selective estrogen receptor modulators (SERM) can act as inverse agonists on CB1 and CB2, an interaction with possible clinical consequences. In addition, cannabinoid action could interact with other commonly used endocrine and targeted therapies used in the treatment of HR+ BC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139952 | PMC |
http://dx.doi.org/10.3390/cancers12030525 | DOI Listing |
Behav Pharmacol
December 2024
Department of Psychology, Grand Valley State University, Allendale, Michigan, USA.
Recent evidence suggests that cannabis can impair simple auditory processes, and these alterations might be due to cannabinoid agonism. The effect of cannabinoid agonism on relatively complex processes such as auditory discrimination is unknown. The goal of this study was to examine the impact of WIN 55,212-2, a CB1 receptor and CB2 receptor agonism, on auditory discrimination using a go/no-go task.
View Article and Find Full Text PDFReprod Toxicol
December 2024
Laboratory of Animal Endocrine and Reproductive Physiology, Department of Physiology, Federal University of Paraná, Curitiba, Brazil. Electronic address:
The endocannabinoid system (ECS) plays a pivotal role in reproductive physiology, including gonadal development, though its influence on testis and ovary development has only recently gained attention. The ECS comprises lipid-derived ligands such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG), along with cannabinoid receptors CB1 and CB2, which are expressed in various gonadal cells. Emerging research indicates that ECS signaling is critical for testosterone synthesis and gonadal cell proliferation and differentiation.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
Atherosclerotic disease is the leading cause of death world-wide. Our goal was to explore the effect of phytocannabinoids on the molecular mechanisms triggering the development of the atheromatous lesion. Three cannabis sativa extracts of different chemotypes were chemically characterized by UPLC-DAD.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Chemistry and Biochemistry, California State University Northridge, CA, 91330, USA. Electronic address:
The endocannabinoid signaling system is comprised of CB1 and CB2 G protein-coupled receptors (GPCRs). CB2 receptor subtype is predominantly expressed in the immune cells and signals through its transducer proteins (Gi protein and β-arrestin-2). Arrestins are signaling proteins that bind to many GPCRs after receptor phosphorylation to terminate G protein signaling (desensitization) and to initiate specific G protein-independent arrestin-mediated signaling pathways via a "phosphorylation barcode", that captures sequence patterns of phosphorylated Ser/Thr residues in the receptor's intracellular domains and can lead to different signaling effects.
View Article and Find Full Text PDFPharmacol Res
December 2024
Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark. Electronic address:
Ketamine (KET) is recognized as rapid-acting antidepressant, but its mechanisms of action remain elusive. Considering the role of endocannabinoids (eCB) in stress and depression, we investigated if S-KET antidepressant effects involve the regulation of the eCB system using an established rat model of depression based on selective breeding: the Flinders Sensitive Line (FSL) and their controls, the Flinders Resistant Line (FRL). S-KET (15 mg/kg) effects were assessed in rats exposed to the open field and forced swimming test (FST), followed by analysis of the eCB signaling in the rat prefrontal cortex (PFC), a brain region involved in depression neurobiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!