Cooperative Intelligent Transportation Systems (C-ITS) are being deployed in several cities around the world. We are preparing for the largest Field Operational Test (FOT) in Australia to evaluate C-ITS safety benefits. Two of the safety benefit hypotheses we formulated assume a dependency between lane changes and C-ITS warnings displayed on the Human Machine Interface (HMI) during safety events. Lane change detection is done by processing many predictors from several sensors at the time of the safety event. However, in our planned FOT, the participating vehicles are only equipped with the vehicle C-ITS and the IMU. Therefore, in this paper, we propose a framework to test lane change and C-ITS dependency. In this framework, we train a random forest classifier using data collected from the IMU to detect lane changes. Consequently, the random forest output probabilities of the testing data in case of C-ITS and control are used to construct a 2x2 contingency table. Then we develop a permutation test to calculate the null hypothesis needed to test the independence of the lane change during safety events and the C-ITS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7046226PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229289PLOS

Publication Analysis

Top Keywords

lane change
16
independence lane
8
cooperative intelligent
8
intelligent transportation
8
lane changes
8
safety events
8
random forest
8
c-its
7
lane
6
safety
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!