Research Tales from the Clardy Laboratory: Function-Driven Natural Product Discovery.

J Nat Prod

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States.

Published: March 2020

Over the past 70 years, the search for small molecules from nature has transformed biomedical research: natural products are the basis for half of all pharmaceuticals; the quest for total synthesis of natural products fueled development of methodologies for organic synthesis; and their biosynthesis presented unprecedented biochemical transformations, expanding our chemo-enzymatic toolkit. Initially, the discovery of small molecules was driven by bioactivity-guided fractionation. However, this approach yielded the frequent rediscovery of already known metabolites. As a result, focus shifted to identifying novel scaffolds through either structure-first methods or genome mining, relegating function as a secondary concern. Over the past two decades, the laboratory of Jon Clardy has taken an alternative route and focused on an ecology-driven, function-first approach in pursuit of uncovering bacterial small molecules with biological activity. In this review, we highlight several examples that showcase this ecology-first approach. Though the highlighted systems are diverse, unifying themes are (1) to understand how microbes interact with their host or environment, (2) to gain insights into the environmental roles of microbial metabolites, and (3) to explore pharmaceutical potential from these ecologically relevant metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jnatprod.9b01086DOI Listing

Publication Analysis

Top Keywords

small molecules
12
natural products
8
tales clardy
4
clardy laboratory
4
laboratory function-driven
4
function-driven natural
4
natural product
4
product discovery
4
discovery years
4
years search
4

Similar Publications

KRAS is a proto-oncogene that is found to be mutated in 15% of all metastatic cancers with high prevalence in pancreatic, lung, and colorectal cancers. Additionally, patients harboring KRAS mutations respond poorly to standard cancer therapy. As a result, KRAS is seen as an attractive target for targeted anticancer therapy.

View Article and Find Full Text PDF

The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.

View Article and Find Full Text PDF

Direct reprogramming of human fibroblasts into hair-inducing dermal papilla cell-like cells by a single small molecule.

Biochem Pharmacol

January 2025

Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen 518000, China. Electronic address:

Dermal papilla cells (DPCs) are a crucial subset of mesenchymal cells in the skin responsible for regulating hair follicle development and growth, making them invaluable for cell-based therapies targeting hair loss. However, obtaining sufficient DPCs with potent hair-inducing abilities remains a persistent challenge. In this study, the Food and Drug Administration (FDA)-approved drug library was utilized to screen small molecules capable of reprogramming readily accessible human skin fibroblasts into functional DPCs.

View Article and Find Full Text PDF

Optimized mammalian expression system for the ubiquitin E3 ligase E6AP/UBE3A.

Protein Expr Purif

January 2025

Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA. Electronic address:

E6AP/UBE3A is the founding member of the HECT (Homologous to the E6-AP Carboxyl Terminus) ubiquitin E3 ligase family, which add ubiquitin post-translationally to protein substrates. E6AP has been structurally defined in complex with human papillomavirus (HPV) oncoprotein E6 and its gain-of-function substrate tumor suppressor p53; however, there is currently no report of E6AP being expressed and purified from mammalian cells, as studies to date have isolated E6AP from E. coli or insect cells.

View Article and Find Full Text PDF

Seeking innovative concepts in development of antiviral drug combinations.

Antiviral Res

January 2025

Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway.

Antiviral drugs are crucial for managing viral infections, but current treatment options remain limited, particularly for emerging viruses. These drugs can be classified based on their chemical composition, including neutralizing antibodies (nAbs), recombinant human receptors (rhRs), antiviral CRISPR/Cas systems, interferons, antiviral peptides (APs), antiviral nucleic acid polymers, and small molecules. Some of these agents target viral factors, host factors, or both.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!