Cenerimod is a sphingosine-1-phosphate 1 receptor modulator under development for treatment of systemic lupus erythematosus.This single-centre, open-label, single-dose study investigated the mass balance and excretion routes and aimed at identifying and quantifying cenerimod metabolites in plasma, urine, and faeces after oral administration of 2 mg/100 μCi (3.7 MBq) of C-cenerimod.Total mean cumulative recovery was 84% of the administered dose (58-100% in faeces and 4.6-12% in urine). In a 0-504 h cross-subject area under the curve plasma pool, cenerimod and two metabolites were detected accounting for 78, 6.0, and 4.9% of total radioactivity, respectively, i.e. no major metabolite was identified in plasma. Cenerimod was only detected in faeces and accounted for 17% of the radioactivity excreted in this matrix. The metabolite M32 was detected in both urine and faeces and represented 23% and 66% of radioactivity excreted in these matrices, respectively. Other metabolites of unknown structure were detected in small amounts. Overall, M32 and cenerimod accounted for 52% and 13%, respectively, of the total radioactivity recovered.Among the excreted metabolites, only the non-enzymatically formed M32 represented more than 25% of total drug-related material. Therefore, no pharmacokinetic drug-drug interaction studies are foreseen.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00498254.2020.1736688DOI Listing

Publication Analysis

Top Keywords

receptor modulator
8
cenerimod metabolites
8
urine faeces
8
total radioactivity
8
radioactivity excreted
8
cenerimod
6
absorption distribution
4
distribution metabolism
4
metabolism excretion
4
excretion cenerimod
4

Similar Publications

Objective And Significance: Transforming growth factor-beta (TGF-β) plays a pivotal role in breast development by modulating tissue composition during the developmental phase. The TGFβ type II receptor (TGFβ RII) is implicated in breast cancer and represents a valuable therapeutic target. Due to the off-target side effects of many existing TGFβI/TGFβ RII inhibitors, a more targeted approach to drug discovery is necessary.

View Article and Find Full Text PDF

Group B (GBS) is a major cause of fetal and neonatal mortality worldwide. Many of the adverse effects of invasive GBS are associated with inflammation; therefore, understanding bacterial factors that promote inflammation is of critical importance. Membrane vesicles (MVs), which are produced by many bacteria, may modulate host inflammatory responses.

View Article and Find Full Text PDF

USP5 inhibits anti-RNA viral innate immunity by deconjugating K48-linked unanchored and K63-linked anchored ubiquitin on IRF3.

PLoS Pathog

January 2025

National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.

Interferon regulatory factor 3 (IRF3) is a central hub transcription factor that controls host antiviral innate immunity. The expression and function of IRF3 are tightly regulated by the post-translational modifications. However, it is unknown whether unanchored ubiquitination and deubiquitination of IRF3 involve modulating antiviral innate immunity against RNA viruses.

View Article and Find Full Text PDF

Importance: Fall risk and cognitive impairment are prevalent and burdensome in Parkinson disease (PD), requiring efficacious, well-tolerated treatment.

Objective: To evaluate the safety and efficacy of TAK-071, a muscarinic acetylcholine M1 positive allosteric modulator, in participants with PD, increased fall risk, and cognitive impairment.

Design, Setting, And Participants: This phase 2 randomized double-blind placebo-controlled crossover clinical trial was conducted from October 21, 2020, to February 27, 2023, at 19 sites in the US.

View Article and Find Full Text PDF

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as NAFLD) is a major driver of cirrhosis and liver-related mortality. However, therapeutic options for MASLD, including prevention of liver steatosis, are limited. We previously described that vasoactive intestinal peptide-producing neurons (VIP-neurons) regulate the efficiency of intestinal dietary fat absorption and IL-22 production by type 3 innate lymphoid cells (ILC3) in the intestine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!