It is important to achieve a moderate sustained release rate for drug delivery, so it is critical to regulate the host-guest interactions for the rational design of a carrier. In this work, a nano-sized biocompatible metal-organic framework (MOF), Mg(HTBAPy)(HO)·CHO (), was constructed by employing π-conjugated 1,3,6,8-tetrakis(-benzoic acid)pyrene () as a ligand and used for 5-fluorouracil (5-FU) loading (28.2 wt %) and sustained slow release. exhibits a 3D supramolecular architecture featuring a 1D rectangle channel with a size of 6.2 × 8.1 Å and a Brunauer-Emmett-Teller surface area of 627 m·g. Channel microenvironment analysis shows that the rigid ligand adopts special torsion to stabilize the channels and offer rich π-binding sites; the partially deprotonated carboxyls not only participate in the formation of strong hydrogen bonds but also create a mild pH buffer environment for biological applications. Suitable host-guest interactions are generated by the synergistic effect of polydirectional hydrogen bonds, multiple π-interactions, and confined channels, which allow 5-FU@ to release 76% of load in 72 h, a medically reasonable rate. Microcalorimetry was used to directly quantify these host-guest interactions with a moderate enthalpy of 22.3 kJ·mol, which provides a distinctive thermodynamic interpretation for understanding the relationship between the MOF design and the drug release rate. Additionally, the nano-sized 5-FU@ can be taken up by mouse breast cancer cells (4T1 cells) for imaging based on the dramatic fluorescence change during the release of 5-FU, exhibiting potential applications in biological systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c01198 | DOI Listing |
Adv Sci (Weinh)
January 2025
Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China.
Age-related macular degeneration (AMD), characterized by choroidal neovascularization (CNV), is the global leading cause of irreversible blindness. Current first-line therapeutics, vascular endothelial growth factor (VEGF) antagonists, often yield incomplete and suboptimal vision improvement, necessitating the exploration of novel and efficacious therapeutic approaches. Herein, a supramolecular engineering strategy to construct moringin (MOR) loaded α-cyclodextrin (α-CD) coated nanoceria (M@CCNP) is constructed, where the hydroxy and newly formed carbonyl groups of α-CD interact with the nanoceria surface via O─Ce conjunction and the isothiocyanate group of MOR inserts deeply into the α-CD cavity via host-guest interaction.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
Intensified host-guest electronic interplay within stable metal-organic cages (MOCs) presents great opportunities for applications in stimuli response and photocatalysis. Zr-MOCs represent a type of robust discrete hosts for such a design, but their host-guest chemistry in solution is hampered by the limited solubility. Here, by using pyridinium-derived cationic ligands with tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (BAr) as solubilizing counteranions, we report the preparation of soluble Zr-MOCs of different shapes (1-4) that are otherwise inaccessible through a conventional method.
View Article and Find Full Text PDFWater Res
January 2025
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institution Pollution Control & Ecology Security, Shanghai 200092, China. Electronic address:
Ion selective membranes with precise Mg/Li separation have attracted extensive interest in lithium extraction to circumvent the lithium supply shortage. However, realizing this target remains a significant challenge mainly due to a high concentration ratio of Mg/Li as well as the relatively close ionic hydration radius and chemical. Herein, inspired by the host-guest recognition between alkali-metal ions and crown ether (CE), a novel approach was proposed to regulate the membrane internal structure by introducing CE to strengthen the complexation between Li and CE.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China. Electronic address:
Cholesterol (CHO) is an essential lipid in cell membranes and a precursor for vital living substances. Abnormal CHO levels can cause cardiovascular diseases. Therefore, simple and accurate monitoring of CHO levels is crucial for early diagnosis and effective management of cardiovascular diseases.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China. Electronic address:
A bromophenylpyridine derivative (N1) was designed, synthesized, and the molecule was incorporated into the cavity of the cucurbit[8]uril (Q[8]) as a guest to form a 2:1 host-guest complex. This complex demonstrates good room temperature phosphorescence (RTP) properties in aqueous solution. The host-guest interaction and optical properties of N1@Q[8] in aqueous solution were studied by means of H NMR, ultraviolet-visible absorption spectroscopy, fluorescence spectroscopy, phosphorescence spectroscopy, scanning electron microscopy and inverted fluorescence microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!