Instructed-Assembly of Small Peptides Inhibits Drug-Resistant Prostate Cancer Cells.

Pept Sci (Hoboken)

Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.

Published: January 2020

Despite multiple new-drug approvals in recent years, prostate cancer remains a global health challenge because of the prostate cancers are resistant to androgen deprivation therapy. Here we show that a small D-phosphopeptide undergoes prostatic acid phosphatase (PAP)-instructed self-assembly for inhibiting castration-resistant prostate cancer (CRPC) cells. Specifically, the installation of phosphate at the C-terminal of a D-tripeptide results in the D-phosphopeptide. Dephosphorylating the D-phosphopeptide by PAP forms uniform nanofibers that inhibit VCaP, a castration-resistant prostate cancer cell. A non-hydrolyzable phosphate analogue of the D-phosphopeptide, which shares similar self-assembling properties with the D-phosphopeptide, confirms that PAP-instructed assembly is critical for the inhibition of VCaP. This work, for the first time, demonstrates PAP-instructed self-assembly of peptides for selective inhibiting castration-resistant prostate cancer (CRPC) cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043405PMC
http://dx.doi.org/10.1002/pep2.24123DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
castration-resistant prostate
12
pap-instructed self-assembly
8
inhibiting castration-resistant
8
cancer crpc
8
crpc cells
8
prostate
6
cancer
5
d-phosphopeptide
5
instructed-assembly small
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!