A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A metabolomics study of ascorbic acid-induced in situ freezing tolerance in spinach ( L.). | LitMetric

Freeze-thaw stress is one of the major environmental constraints that limit plant growth and reduce productivity and quality. Plants exhibit a variety of cellular dysfunctions following freeze-thaw stress, including accumulation of reactive oxygen species (ROS). This means that enhancement of antioxidant capacity by exogenous application of antioxidants could potentially be one of the strategies for improving freezing tolerance (FT) of plants. Exogenous application of ascorbic acid (AsA), as an antioxidant, has been shown to improve plant tolerance against abiotic stresses but its effect on FT has not been investigated. We evaluated the effect of AsA-feeding on FT of spinach ( L.) at whole plant and excised-leaf level, and conducted metabolite profiling of leaves before and after AsA treatment to explore metabolic explanation for change in FT. AsA application did not impede leaf growth, instead slightly promoted it. Temperature-controlled freeze-thaw tests revealed AsA-fed plants were more freezing tolerant as indicated by: (a) less visual damage/mortality; (b) lower ion leakage; and (c) less oxidative injury, lower abundance of free radicals ( and HO). Comparative leaf metabolite profiling revealed clear separation of metabolic phenotypes for control versus AsA-fed leaves. Specifically, AsA-fed leaves had greater abundance of antioxidants (AsA, glutathione, alpha- & gamma-tocopherol) and compatible solutes (proline, galactinol, and myo-inositol). AsA-fed leaves also had higher activity of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, and catalase). These changes, together, may improve FT via alleviating freeze-induced oxidative stress as well as protecting membranes from freeze desiccation. Additionally, improved FT by AsA-feeding may potentially include enhanced cell wall/lignin augmentation and bolstered secondary metabolism as indicated by diminished level of phenylalanine and increased abundance of branched amino acids, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036623PMC
http://dx.doi.org/10.1002/pld3.202DOI Listing

Publication Analysis

Top Keywords

asa-fed leaves
12
freezing tolerance
8
freeze-thaw stress
8
exogenous application
8
metabolomics study
4
study ascorbic
4
ascorbic acid-induced
4
acid-induced situ
4
situ freezing
4
tolerance spinach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!