Improving peroral delivery efficiency is always a persistent goal for both small-molecule and macromolecular drug development. However, intestinal mucus barrier which greatly impedes drug-loaded nanoparticles penetration is commonly overlooked. Therefore, in this study, taking fluorescent labeled PLGA (poly (lactic-co-glycolic acid)) nanoparticles as a tool, the influence of anionic and nonionic surfactants on mucus penetration ability of nanoparticles and their mucus barrier regulating ability were studied. The movement of PLGA nanoparticles in mucus was tracked by multiple particles tracking method (MPT). Alteration of mucus properties by addition of surfactants was evaluated by rheology and morphology study. Rat intestinal villus penetration study was used to further evaluate penetration enhancement of nanoparticles. The effective diffusivities of the nanoparticles in surfactants pretreated mucus were increased by 2-3 times and the mucus barrier regulating capacity was also surfactant type dependent. Sodium dodecyl sulfate (SDS) increased the complex viscosity and viscoelastic properties of mucus, but poloxamer presented a decreased trend. Tween 80 maintained the rheological property of the mucus. With the mucus barrier regulated by surfactants, the penetration of nanoparticles in intestinal villus was obviously increased. In summary, the mucus penetration ability of nanoparticles could be enhanced by altering mucus microenvironment with surfactants. Tween 80 which largely retains the original mucus rheology and morphology properties may be a promising candidate for facilitating nanoparticle penetration through the mucus barrier with good safety profile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7032225PMC
http://dx.doi.org/10.1016/j.ajps.2018.09.002DOI Listing

Publication Analysis

Top Keywords

mucus barrier
24
mucus
15
nanoparticles
9
intestinal mucus
8
penetration
8
nanoparticles penetration
8
mucus penetration
8
penetration ability
8
ability nanoparticles
8
nanoparticles mucus
8

Similar Publications

Cellular Senescence Contributes to Colonic Barrier Integrity Impairment Induced by Toxoplasma gondii Infection.

Inflammation

January 2025

Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Toxoplasma gondii (T. gondii) induces gut barrier integrity impairment, which is crucial to the establishment of long-term infection in hosts. Cellular senescence is an imperative event that drives disease progression.

View Article and Find Full Text PDF

Background: The main challenge in new drug development is accurately predicting the human response in preclinical models.

Methods: In this study, we developed three different intestinal barrier models using advanced biofabrication techniques: (i) a manual model containing Caco-2 and HT-29 cells on a collagen bed, (ii) a manual model with a Caco-2/HT-29 layer on a HDFn-laden collagen layer, and (iii) a 3D bioprinted model incorporating both cellular layers. Each model was rigorously tested for its ability to simulate a functional intestinal membrane.

View Article and Find Full Text PDF

A 3D Model of the Human Lung Airway for Evaluating Permeability of Inhaled Drugs.

ACS Pharmacol Transl Sci

January 2025

Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States.

Current in vitro cell-based methods, relying on single cell types, have structural and functional limitations in determining lung drug permeability, which is a contributing factor affecting both local and systemic drug levels. To address this issue, we investigated a 3D human lung airway model generated using a cell culture insert, wherein primary human lung epithelial and endothelial cells were cocultured at an air-liquid interface (ALI). To ensure that the cell culture mimics the physiological and functional characteristics of airway tissue, the model was characterized by evaluating several parameters such as cellular confluency, ciliation, tight junctions, mucus-layer formation, transepithelial electrical resistance, and barrier function through assaying fluorescein isothiocyanate-dextran permeability.

View Article and Find Full Text PDF

Introduction: The gut microbiome maintains the mucus membrane barrier's integrity, and it is modulated by the host's immune system.

Aim: To detect the effect of microbiota modulation using probiotics, prebiotics, symbiotics, and natural changes on colorectal cancers (CRCs).

Methods: A PubMed search was conducted to retrieve the original and articles published in English language from 2010 until 2021 containing the following keywords: 1) CRCs, 2) CRCs treatment (i.

View Article and Find Full Text PDF

Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

January 2025

School of Pharmacy and Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.

Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!