Inhibitors of apoptosis proteins (IAPs) are associated with T-2 toxin-induced decreased collagen II in mouse chondrocytes in vitro.

Toxicon

Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China; Departments of Surgery, University of Illinois College of Medicine, One Illini Drive, Peoria, IL, 61605, USA. Electronic address:

Published: March 2020

T-2 toxin is considered an unavoidable pollutant, which contaminates food crops and stockpiled cereals, impairing the health of humans and animals due to its multi-organ toxicity. Studies have shown that T-2 toxin can cause articular cartilage damage; however, the underlying molecular mechanism is still unclear. Here, we investigated the possible mechanism of the following inhibitors of apoptosis proteins (IAPs) family members: NAIP, cIAP1, cIAP2, XIAP, and Survivin, and their involvement in T-2 toxin-induced mouse chondrocyte damage. In this study, mouse articular chondrocytes were isolated and cultured in vitro, and the chondrocytes were then treated with 0, 5, 10, and 20 ng/mL T-2 toxin. Firstly, the toxic effect of T-2 toxin on chondrocytes was determined. CCK-8 assay results showed that T-2 toxin induced a dose-dependent inhibition of chondrocyte viability. Transmission electron microscopy demonstrated that T-2 toxin caused morphological changes in chondrocyte endoplasmic reticulum and an increase in mitochondrial swelling. In addition, Annexin-V-FITC/PI staining and caspase 3 protein expression showed that T-2 toxin induced an increase in the apoptotic rate of chondrocytes. Secondly, it was found that T-2 toxin cause decreased expression of cellular and secreted Collagen II. Finally, we examined the expression of NAIP, cIAP1, cIAP2, XIAP, and Survivin in chondrocytes in the presence of T-2 toxin and their relationship with decreased Collagen II. The decrease in Collagen II was negatively correlated with the expression of cIAP1, cIAP2 and positively correlated with NAIP and Survivin mRNA level. Survivin mRNA level had a positive correlation with Collagen II as shown by partial correlation analysis. This study revealed the new role of IAPs in chondrocyte injury and provides new insights and clues into the mechanism of T-2 toxin-induced chondrocyte damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2020.01.002DOI Listing

Publication Analysis

Top Keywords

t-2 toxin
36
t-2
12
t-2 toxin-induced
12
ciap1 ciap2
12
toxin
9
inhibitors apoptosis
8
apoptosis proteins
8
proteins iaps
8
decreased collagen
8
naip ciap1
8

Similar Publications

T-2 toxin triggers immunotoxic effects in goats by inducing ferroptosis and neutrophil extracellular traps.

Toxicol Appl Pharmacol

January 2025

College of Veterinary Medicine, Southwest University, Chongqing 400715, China. Electronic address:

T-2 toxin, a prevalent mycotoxin, represents a notable global public health risk. Neutrophil extracellular traps (NETs) and ferroptosis are involved in a variety of pathophysiological processes and are implicated in goat immunity. However, the impact of T-2 toxin on NETs release, ferroptosis, and their interplay have not been previously documented.

View Article and Find Full Text PDF

Ultrabright aggregation-induced materials for the highly sensitive detection of Ag and T-2 toxin.

Food Chem

January 2025

State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:

Heavy metals and mycotoxins are important contaminants in food pollution. Sensitive, reliable, and rapid detection of heavy metals and mycotoxins is crucial for human health. In this work, imidazole-functionalized aggregation-induced emission (AIE) molecule tetra-(4-pyridylphenyl) ethylene (TPPE) was used as a precise and specific probe for Ag detection, with a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

Downregulation of HSP47 triggers ER stress-mediated apoptosis of hypertrophic chondrocytes contributing to T-2 toxin-induced cartilage damage.

Environ Pollut

January 2025

School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China. Electronic address:

T-2 toxin contamination in food and feed is a growing global concern, with its toxic effects on developing cartilage remaining poorly understood. In this study, we constructed an animal model using 4-week-old male Sprague-Dawley rats, which were administered T-2 toxin (200 ng/g body weight per day) by gavage for one month. Histological analysis showed a significant reduction in hypertrophic chondrocytes and increased caspase-3 expression and TUNEL staining in the deep cartilage zone of T-2 toxin-treated rats.

View Article and Find Full Text PDF

Co-occurrence of multiple mycotoxins is a growing global food safety concern due to their harmful effects on humans and animals. This study developed an eco-friendly sample preparation method and an innovative multiplex microarray-based lateral flow immunoassay, using a novel portable reader for on-site simultaneous determination of five regulated mycotoxins-aflatoxin B, T-2 toxin, zearalenone, deoxynivalenol, and fumonisin B in rice. The eco-friendly and ultrafast extraction procedure utilizes a bio-based solvent.

View Article and Find Full Text PDF

Mycotoxins are secondary metabolites of fungi and represent a serious problem for human health. Due to growing interest, various aspects have been widely studied by scientific groups. One of these aspects relates to the food industry and associated beer production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!