Background: A long-term experiment at two trial sites in Kenya has been on-going since 2007 to assess the effect of organic and conventional farming systems on productivity, profitability and sustainability. During these trials the presence of significant numbers of termites (Isoptera) was observed. Termites are major soil macrofauna and within literature they are either depict as 'pests' or as important indicator for environmental sustainability. The extent by which termites may be managed to avoid crop damage, but improve sustainability of farming systems is worthwhile to understand. Therefore, a study on termites was added to the long-term experiments in Kenya. The objectives of the study were to quantify the effect of organic (Org) and conventional (Conv) farming systems at two input levels (low and high) on the abundance, incidence, diversity and foraging activities of termites.

Results: The results showed higher termite abundance, incidence, activity and diversity in Org-High compared to Conv-High, Conv-Low and Org-Low. However, the termite presence in each system was also dependent on soil depth, trial site and cropping season. During the experiment, nine different termite genera were identified, that belong to three subfamilies: (i) Macrotermitinae (genera: Allodontotermes, Ancistrotermes, Macrotermes, Microtermes, Odontotermes and Pseudocanthotermes), (ii) Termitinae (Amitermes and Cubitermes) and (iii) Nasutitiermitinae (Trinervitermes).

Conclusions: We hypothesize that the presence of termites within the different farming systems might be influenced by the types of input applied, the soil moisture content and the occurrence of natural enemies. Our findings further demonstrate that the organic high input system attracts termites, which are an important, and often beneficial, component of soil fauna. This further increases the potential of such systems in enhancing sustainable agricultural production in Kenya.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045444PMC
http://dx.doi.org/10.1186/s12898-020-00282-xDOI Listing

Publication Analysis

Top Keywords

farming systems
20
study termites
8
termites long-term
8
abundance incidence
8
termites
7
farming
6
systems
6
soil
5
impact conventional
4
organic
4

Similar Publications

Brucellosis is considered a common bacterial zoonotic disease of high prevalence in countries of the Middle East and the Mediterranean region with economic and public health impact. The present study aimed to investigate the current situation of brucellosis in small ruminants reared in Médéa and Sidi Bel-Abbès provinces, north Algeria. To achieve this objective, 96 sera (77 sheep and 19 goat) and 57 milk (42 sheep and 15 goat) samples were collected from suspected infected animals and serologically analyzed by using ELISA.

View Article and Find Full Text PDF

Smooth muscle AKG/OXGR1 signaling regulates epididymal fluid acid-base balance and sperm maturation.

Life Metab

August 2022

Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.

Infertility is a global concern attributed to genetic defects, lifestyle, nutrition, and any other factors that affect the local metabolism and niche microenvironment of the reproductive system. 2-Oxoglutarate receptor 1 (OXGR1) is abundantly expressed in the testis; however, its cellular distribution and biological function of OXGR1 in the male reproductive system remain unclear. In the current study, we demonstrated that OXGR1 is primarily expressed in epididymal smooth muscle cells (SMCs).

View Article and Find Full Text PDF

Standardized naming convention and classification system for critical loads of nitrogen and sulfur deposition.

Ecosphere

June 2023

US Department of Agriculture - Forest Service, Air Resource Management, Washington, DC, USA.

Critical loads (CLs) of atmospheric deposition have been used for multiple decades to assess the impacts of air pollutants on terrestrial and aquatic ecosystems. However, these CLs have been developed by different researchers, at different times, using different methods, and are named in different ways with varying levels of information and levels of specificity. In this study, we identified the elements that describe CLs and used them to develop and test a standardized CL naming convention and a complementary CL classification system applicable to all CLs.

View Article and Find Full Text PDF

Bacterial leaf blight (BLB) in rice, caused by the pathogen pv. , is a significant agricultural problem managed through chemical control and cultivating rice varieties with inherent resistance to the bacterial pathogen. Research has highlighted the potential of using antagonistic microbes which can suppress the BLB pathogen through the production of secondary metabolites like siderophores, rhamnolipids, and hydroxy-alkylquinolines offering a sustainable alternative for BLB management.

View Article and Find Full Text PDF

When synthetic biology meets medicine.

Life Med

February 2024

CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

In recent years, the world has faced significant challenges with the coronavirus disease 2019 (COVID-19) pandemic, as well as other infectious diseases such as Zika and Ebola. Furthermore, the rapid rise of non-communicable diseases such as diabetes, heart disease, and cancer has placed tremendous strain on healthcare resources and systems. Unfortunately, advancements in drug development, diagnostics, and therapeutics have struggled to keep pace with the emergence and progression of diseases, necessitating the exploration of new technologies for the discovery and development of biomedicines and biotherapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!