γ-Glutamylcysteine synthetase (γ-GCS) from Escherichia coli, which catalyzes the formation of L-glutamylcysteine from L-glutamic acid and L-cysteine, was engineered into an L-theanine synthase using L-glutamic acid and ethylamine as substrates. A high-throughput screening method using a 96-well plate was developed to evaluate the L-theanine synthesis reaction. Both site-saturation mutagenesis and random mutagenesis were applied. After three rounds of directed evolution, 13B6, the best-performing mutant enzyme, exhibited 14.6- and 17.0-fold improvements in L-theanine production and catalytic efficiency for ethylamine, respectively, compared with the wild-type enzyme. In addition, the specific activity of 13B6 for the original substrate, L-cysteine, decreased to approximately 14.6% of that of the wild-type enzyme. Thus, the γ-GCS enzyme was successfully switched to a specific L-theanine synthase by directed evolution. Furthermore, an ATP-regeneration system was introduced based on polyphosphate kinases catalyzing the transfer of phosphates from polyphosphate to ADP, thus lowering the level of ATP consumption and the cost of L-theanine synthesis. The final L-theanine production by mutant 13B6 reached 30.4 ± 0.3 g/L in 2 h, with a conversion rate of 87.1%, which has great potential for industrial applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-020-10482-6 | DOI Listing |
Int J Mol Sci
October 2024
Agrarian and Technological Institute, Peoples' Friendship University of Russia, 117198 Moscow, Russia.
Enzyme Microb Technol
October 2024
School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
The thermal instability of γ-glutamylmethylamide synthetase (GMAS) from Methylovorus mays has imposed limitations on its industrial applications, affecting both stability and activity at reaction temperatures. In this study, disulfide bridges were introduced through a combination of directed evolution and rational design to enhance GMAS stability. Among the variants that we generated, M12 exhibited a 1.
View Article and Find Full Text PDFFood Res Int
November 2022
Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China. Electronic address:
The diverse tea (Camellia sinensis) germplasms in China include those that specifically accumulate metabolites, such as anthocyanin, catechin, amino acid, caffeine, aroma compound, and chlorophyll. There is interest in the derived products because of special flavor quality or high efficacy activity. This review describes the characteristics of specific tea germplasms and associated regulatory mechanisms.
View Article and Find Full Text PDFFront Nutr
April 2022
Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
L-Theanine is commonly used to improve sleep quality through inhibitory neurotransmitters. On the other hand, Mg, a natural NMDA antagonist and GABA agonist, has a critical role in sleep regulation. Using the caffeine-induced brain electrical activity model, here we investigated the potency of L-theanine and two novel Mg-L-theanine compounds with different magnesium concentrations on electrocorticography (ECoG) patterns, GABAergic and serotonergic receptor expressions, dopamine, serotonin, and melatonin levels.
View Article and Find Full Text PDFNutrients
November 2021
Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
Epigallocatechin gallate (EGCG) and L-theanine (LTA) are important bioactive components in tea that have shown promising effects on nutrient metabolism. However, whether EGCG alone or combined with LTA can regulate the glucose, lipid, and protein metabolism of healthy rats remains unclear. Therefore, we treated healthy rats with EGCG or the combination of EGCG and LTA (EGCG+LTA) to investigate the effects of EGCG on nutrient metabolism and the role of LTA in the metabolism-regulatory effects of EGCG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!