Predominant regional biophysical cooling from recent land cover changes in Europe.

Nat Commun

Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

Published: February 2020

Around 70 Mha of land cover changes (LCCs) occurred in Europe from 1992 to 2015. Despite LCCs being an important driver of regional climate variations, their temperature effects at a continental scale have not yet been assessed. Here, we integrate maps of historical LCCs with a regional climate model to investigate air temperature and humidity effects. We find an average temperature change of -0.12 ± 0.20 °C, with widespread cooling (up to -1.0 °C) in western and central Europe in summer and spring. At continental scale, the mean cooling is mainly correlated with agriculture abandonment (cropland-to-forest transitions), but a new approach based on ridge-regression decomposing the temperature change to the individual land transitions shows opposite responses to cropland losses and gains between western and eastern Europe. Effects of historical LCCs on European climate are non-negligible and region-specific, and ignoring land-climate biophysical interactions may lead to sub-optimal climate change mitigation and adaptation strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044322PMC
http://dx.doi.org/10.1038/s41467-020-14890-0DOI Listing

Publication Analysis

Top Keywords

land cover
8
cover changes
8
regional climate
8
continental scale
8
historical lccs
8
temperature change
8
predominant regional
4
regional biophysical
4
biophysical cooling
4
cooling land
4

Similar Publications

This study addresses the significant issue of rapid land use and land cover (LULC) changes in Lahore District, which is critical for supporting ecological management and sustainable land-use planning. Understanding these changes is crucial for mitigating adverse environmental impacts and promoting sustainable development. The main goal is to evaluate historical LULC changes from 1994 to 2024 and forecast future trends for 2034 and 2044 utilizing the CA-Markov hybrid model combined with GIS methodologies.

View Article and Find Full Text PDF

Spatial variations in urban woodland cooling between background climates.

Sci Rep

January 2025

Department of Geography, School of Environment, Education and Development, The University of Manchester, Arthur Lewis Building, Oxford Road, Manchester, M13 9PL, UK.

Urban woodland composition and configuration have strong associations with land surface temperatures (LST), but the evidence is contradictory due to different spatial scales, regional climate zones, woodland types and urban contexts. In this study, we analyse associations between urban woodland and LST within and between five cities in different Köppen climate zones. Our consistent methodology is framed around local climate zones and conducted at a fine spatial scale.

View Article and Find Full Text PDF

With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models.

View Article and Find Full Text PDF

Small forest patches and landscape-scale fragmentation exacerbate forest fire prevalence in Amazonia.

J Environ Manage

January 2025

School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK; Instituto Juruá, Manaus, Brazil.

Over recent decades, forest fire prevalence has increased throughout the tropics, necessitating improved understanding of the landscape-scale drivers of fire occurrence. Here, we use MapBiomas land-cover and fire scar data to evaluate relationships between forest fragmentation, land-use, and forest fire prevalence in a typically consolidated Amazonian agricultural frontier: Portal da Amazonia, Mato Grosso, Brazil. Using zero-/zero-one-inflated Beta regressions, we investigate effects of forest patch (area, shape, surrounding forest cover) and landscape-scale variables (forest edge length, land-cover composition) on forest fire occurrence and density between 1985 and 2021.

View Article and Find Full Text PDF

Was extinction of New Zealand's avian megafauna an unavoidable consequence of human arrival?

Sci Total Environ

January 2025

School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia; The Environment Institute, University of Adelaide, Adelaide, SA 5000, Australia; Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Human overexploitation contributed strongly to the loss of hundreds of bird species across Oceania, including nine giant, flightless birds called moa. The inevitability of anthropogenic moa extinctions in New Zealand has been fiercely debated. However, we can now rigorously evaluate their extinction drivers using spatially explicit demographic models capturing species-specific interactions between moa, natural climates and landscapes, and human colonists.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!