Background: Head and neck squamous cell carcinoma (HNSCC) has a yearly incidence of 600,000 cases worldwide with a low survival rate. Ocimum sanctum L. or Ocimum tenuiflorum L. (Holy basil; Tulsi in Hindi), is a traditional medicine herb that demonstrates numerous effects including anti-oxidant, anti-microbial, and anti-tumor effects. The aim of this study was to evaluate the anti-invasive effect of O. sanctum leaf extract on HNSCC cell lines.
Methods: Ethanolic extract of O. sanctum leaf (EEOS) was prepared and the phenolic compounds were identified using high-performance liquid chromatography-electrospray ionization-time of flight-mass spectrometry. Genetically matched HNSCC cell lines derived from primary (HN30 and HN4) and metastatic sites (HN31 and HN12) from the same patient were used in this study. The EEOS cytotoxicity to the cell lines was determined using an MTT assay. The invasion and matrix metalloproteinase (MMP)-2 and -9 activity of EEOS-treated cells were tested using a modified Boyden chamber assay and zymography, respectively.
Results: We found that EEOS significantly inhibited the invasion and MMP-2 and MMP-9 activity of HN4 and HN12 cells, but not HN30 and HN31 cells. Rosmarinic acid, caffeic acid, and apigenin were detected in EEOS. Moreover, rosmarinic acid was found as the major phenolic compound.
Conclusion: EEOS exerted its anti-invasive effect on HNSCC cells by attenuating MMP activity. The active compounds identified in EEOS might be promising as an alternative therapeutic agent for HNSCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332114 | PMC |
http://dx.doi.org/10.31557/APJCP.2020.21.2.363 | DOI Listing |
Sci Rep
December 2024
Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.
The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.
View Article and Find Full Text PDFSci Rep
December 2024
Molecular Biology and Genetics Laboratory (LGBM), UFMS - Federal University of Mato Grosso do Sul, Três Lagoas, Brazil.
Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort.
View Article and Find Full Text PDFNat Commun
December 2024
IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy.
Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!