Monte Carlo (MC) track structure simulation tools are commonly used for predicting radiation induced DNA damage by modeling the physical and chemical reactions at the nanometer scale. However, the outcome of these MC simulations is particularly sensitive to the adopted parameters which vary significantly across studies. In this study, a previously developed full model of nuclear DNA was used to describe the DNA geometry. The TOPAS-nBio MC toolkit was used to investigate the impact of physics and chemistry models as well as three key parameters (the energy threshold for direct damage, the chemical stage time length, and the probability of damage between hydroxyl radical reactions with DNA) on the induction of DNA damage. Our results show that the difference in physics and chemistry models alone can cause differences up to 34% and 16% in the DNA double strand break (DSB) yield, respectively. Additionally, changing the direct damage threshold, chemical stage length, and hydroxyl damage probability can cause differences of up to 28%, 51%, and 71% in predicted DSB yields, respectively, for the configurations in this study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7748977 | PMC |
http://dx.doi.org/10.1088/1361-6560/ab7a6b | DOI Listing |
Asia Pac J Clin Oncol
January 2025
LifeStrands Genomics Australia, Mount Waverley, Victoria, Australia.
Some patients with metastatic castration-resistant prostate cancer (mCRPC) possess germline or acquired defects in the DNA damage repair (DDR) genes BRCA1 and BRCA2. Tumors with BRCA mutations exhibit sensitivity to poly-ADP ribose polymerase inhibitors (PARPi) such as olaparib and rucaparib. As a result, molecular diagnostic testing to identify patients with BRCA mutations eligible for the PARPi therapy has become an integral component of managing patients with mCRPC.
View Article and Find Full Text PDFJ Appl Toxicol
January 2025
Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil.
The present systematic review aims to put together human population studies that include some relationship between genetic polymorphisms and genotoxicity as well as to evaluate the quality of the published studies induced by cigarette smoke exposure in vivo. The present systematic review was built according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Different genotoxicity assays were used by different authors, although the major goal was the genotoxicity assessment by means of micronucleus, comet, sister chromatid exchange, and chromosomal aberration assays.
View Article and Find Full Text PDFUltrastruct Pathol
January 2025
Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt.
Breast cancer patients experience more severe emotional distress and depression compared to those with other cancers. Selective serotonin reuptake inhibitors (SSRIs), like citalopram, are commonly used to treat depression. However, the link between SSRI use and breast cancer progression is debated.
View Article and Find Full Text PDFLipids Health Dis
January 2025
Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China.
Background: Bladder cancer is one of the most common malignancies of the urinary system. Despite significant advances in diagnosis and treatment, the compromised therapeutic effect of chemotherapeutic agents, such as Oxaliplatin (OXA), remains a major clinical challenge. Thus, a combination therapy is required to enhance the OXA's therapeutic effectiveness and improve patient outcomes.
View Article and Find Full Text PDFSci Rep
January 2025
Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands.
Bladder cancer often recurs, necessitating innovative treatments to reduce recurrence. We investigated non-thermal plasma's potential as a novel anti-cancer therapy, focusing on plasma-activated solution (PAS), created by exposing saline to non-thermal plasma. Our study aims to elucidate the biological effects of PAS on bladder cancer cell lines in vitro, as well as the combination with mitomycin C (MMC), using clinically relevant settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!