Diisocyanates are well-recognized causes of asthma. However, sensitized workers frequently lack diisocyanate-specific IgE, which complicates diagnosis and suggests the disease involves IgE-independent mechanisms. We used a mouse model of methylene diphenyl diisocyanate (MDI) asthma to identify biological pathways that may contribute to asthma pathogenesis. MDI sensitization and respiratory tract exposure were performed in Balb/c, transgenic B-cell (e.g., IgE)-deficient mice and a genetic background (C57BL/6)-matched strain. Eosinophils in airway fluid were quantitated by flow cytometry. Lung tissue gene expression was assessed using whole-genome mRNA microarrays. Informatic software was used to identify biological pathways affected by respiratory tract exposure and potential targets for disease intervention. Airway eosinophilia and changes (>1.5-fold; value < 0.05) in expression of 192 genes occurred in all three mouse strains tested, with enrichment in chemokines and a pattern associated with alternatively activated monocytes/macrophages. CLCA1 (calcium-activated chloride channel regulator 1) was the most upregulated gene transcript (>100-fold) in all exposed mouse lungs versus controls, followed closely by SLC26A4, another transcript involved in Cl conductance. Crofelemer, a U.S. Food and Drug Administration-approved Cl channel inhibitor, reduced MDI exposure induction of airway eosinophilia, mucus, CLCA1, and other asthma-associated gene transcripts. Expression changes in a core set of genes occurs independent of IgE in a mouse model of chemical-induced airway eosinophilia. In addition to chemokines and alternatively activated monocytes/macrophages, the data suggest a crucial role for Cl channels in diisocyanate asthma pathology and as a possible target for intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328250PMC
http://dx.doi.org/10.1165/rcmb.2019-0400OCDOI Listing

Publication Analysis

Top Keywords

airway eosinophilia
16
mouse model
12
gene expression
8
role channels
8
asthma pathology
8
identify biological
8
biological pathways
8
respiratory tract
8
tract exposure
8
airway
5

Similar Publications

Asthma is a chronic respiratory disease characterized by airway inflammation. Lignosus rhinocerotis (LR), a medicinal mushroom rich in polysaccharide, has been traditionally used to treat various diseases, including asthma. This study aimed to fractionate, characterize and evaluate the anti-asthmatic effects of polysaccharides from LR (LRP).

View Article and Find Full Text PDF

GZMK-expressing CD8 T cells promote recurrent airway inflammatory diseases.

Nature

January 2025

Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.

Inflammatory diseases are often chronic and recurrent, and current treatments do not typically remove underlying disease drivers. T cells participate in a wide range of inflammatory diseases such as psoriasis, Crohn's disease, oesophagitis and multiple sclerosis, and clonally expanded antigen-specific T cells may contribute to disease chronicity and recurrence, in part by forming persistent pathogenic memory. Chronic rhinosinusitis and asthma are inflammatory airway diseases that often present as comorbidities.

View Article and Find Full Text PDF

In prednisone-dependent severe asthma, uncontrolled sputum eosinophilia is associated with increased numbers of group 2 innate lymphoid cells (ILC2s). These cells represent a relatively steroid-insensitive source of interleukin-5 (IL-5) and IL-13 and are considered critical drivers of asthma pathology. The abundance of ILC subgroups in severe asthma with neutrophilic or mixed granulocytic (both eosinophilic and neutrophilic) airway inflammation, prone to recurrent infective exacerbations, remains unclear.

View Article and Find Full Text PDF

Background: Airway inflammation has a critical role in asthma pathogenesis and pathophysiology. Yet, the molecular pathways contributing to airway inflammation are not fully known, particularly Type-2 (T2) inflammation characterized by both eosinophilia and higher FeNO levels.

Objective: To identify genes whose level of expression in epithelial brushing samples were associated with both bronchoalveolar lavage (BAL) eosinophilia and generation of FeNO.

View Article and Find Full Text PDF

TSLP acts on regulatory T cells to maintain their identity and limit allergic inflammation.

Sci Immunol

January 2025

Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.

Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (T), which drive the immune response, and regulatory T cells (T), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on T versus T to balance type 2 immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!