To advance current Li rechargeable batteries further, tremendous emphasis has been made on the development of anode materials with higher capacities than the widely commercialized graphite. Some of these anode materials exhibit capacities above the theoretical value predicted based on conventional mechanisms of Li storage, namely insertion, alloying, and conversion. In addition, in contrast to conventional observations of loss upon cycling, the capacity has been found to increase during repeated cycling in a significant number of cases. As the internal environment in the battery is very complicated and continuously changing, these abnormal charge storage behaviors are caused by diverse reactions. In this review, we will introduce our current understanding of reported reactions accounting for the extra capacity. It includes formation/decomposition of electrolyte-derived surface layer, the possibility of additional charge storage at sharp interfaces between electronic and ionic sinks, redox reactions of Li-containing species, unconventional activity of structural defects, and metallic-cluster like Li storage. We will also discuss how the changes in the anode can induce capacity increase upon cycling. With this knowledge, new insights into possible strategies to effectively and sustainably utilize these abnormal charge storage mechanisms to produce vertical leaps in performance of anode materials will be laid out.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrev.9b00618 | DOI Listing |
Nature
January 2025
Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, China.
With promises for high specific energy, high safety and low cost, the all-solid-state lithium-sulfur battery (ASSLSB) is ideal for next-generation energy storage. However, the poor rate performance and short cycle life caused by the sluggish solid-solid sulfur redox reaction (SSSRR) at the three-phase boundaries remain to be solved. Here we demonstrate a fast SSSRR enabled by lithium thioborophosphate iodide (LBPSI) glass-phase solid electrolytes (GSEs).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States.
Lead azide (LA) is a widely utilized primary explosive, serving as the initiating charge in blasting caps or detonators to start the detonation process of secondary explosives. The toxicity and environmental concerns associated with LA have led to regulatory restrictions and increased scrutiny, prompting the search for lead-free alternatives. LA is highly sensitive toward heat, shock, or friction, which poses safety challenges during manufacturing, handling, and storage.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Physics, Tamkang University, Tamsui, 25137, Taiwan.
This investigation explores the potential of co-incorporating nickel (Ni) and cobalt (Co) into copper oxide (CuO) nanostructures for bifunctional electrochemical charge storage and oxygen evolution reactions (OER). A facile wet chemical synthesis method is employed to co-incorporate Ni and Co into CuO, yielding diverse nanostructured morphologies, including rods, spheres, and flake. The X-ray diffraction (XRD) and Raman analyses confirmed the formation of NiCo-CuO nanostructure, with minor phases of nickel oxide (NiO) and cobalt tetraoxide (CoO).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
Cotton textiles with persistent antibacterial qualities are crucial in halting the spread of bacteria and other infections. However, fugitive bacteria and drug-resistant pathogens have rendered tremendous challenges in the development of cotton fabrics with long-lasting antibacterial efficacy. The work aimed to innovatively propose a functional cotton fabric integrating intelligent bacteria-capturing and dual antibacterial properties for efficacious personal health management.
View Article and Find Full Text PDFTungsten bronze oxides have emerged as attractive materials for energy storage owing to their fast charge-discharge property. However, the internal weakness of low capacity and short cycling performance impedes their development in wide application. In this work, the tungsten bronze WNbO nanorods with preferred orientation (001) were prepared by hydrothermal method for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!