Background: Color vision is the ability to detect, distinguish, and analyze the wavelength distributions of light independent of the total intensity. It mediates the interaction between an organism and its environment from multiple important aspects. However, the physicochemical basis of color coding has not been explored completely, and how color perception is integrated with other sensory input, typically odor, is unclear.
Results: Here, we developed an artificial intelligence platform to train algorithms for distinguishing color and odor based on the large-scale physicochemical features of 1,267 and 598 structurally diverse molecules, respectively. The predictive accuracies achieved using the random forest and deep belief network for the prediction of color were 100% and 95.23% ± 0.40% (mean ± SD), respectively. The predictive accuracies achieved using the random forest and deep belief network for the prediction of odor were 93.40% ± 0.31% and 94.75% ± 0.44% (mean ± SD), respectively. Twenty-four physicochemical features were sufficient for the accurate prediction of color, while 39 physicochemical features were sufficient for the accurate prediction of odor. A positive correlation between the color-coding and odor-coding properties of the molecules was predicted. A group of descriptors was found to interlink prominently in color and odor perceptions.
Conclusions: Our random forest model and deep belief network accurately predicted the colors and odors of structurally diverse molecules. These findings extend our understanding of the molecular and structural basis of color vision and reveal the interrelationship between color and odor perceptions in nature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043059 | PMC |
http://dx.doi.org/10.1093/gigascience/giaa011 | DOI Listing |
Food Res Int
January 2025
School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China. Electronic address:
Chrysanthemi Flos has been consumed as floral tea for centuries, but the effects of stir-frying on its chemical profile, sensory characteristics, and bioactivity remain unclear. This study used untargeted metabolomics, sensory assessment (E-eye, E-nose, E-tongue), and antioxidant activity evaluation to investigate compositional changes and their effects. In the metabolomics analysis, a total of 101 non-volatile and 306 volatile differential metabolites were identified.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
The dried capitulum of chrysanthemums is a traditional material in scented tea, and the kill-green process is a critical step in determining their quality. However, the changes in the physicochemical properties during kill-green and the mechanisms by which these changes affect drying characteristics, metabolic components, and aroma profiles remain unclear. Therefore, this study investigated the changes in water status, polyphenol oxidase and peroxidase activities, and microstructure during high-humidity air impingement kill-green (HHAIK) and steam kill-green (SK), and their effects on drying behavior, color, phytochemicals, and volatile profile of dried chrysanthemums.
View Article and Find Full Text PDFJ Otol
October 2024
Department of Public Health, Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic.
Background: Over 55 million people worldwide are living with dementia. The rate of cognitive decline increases with age, and loss of senses may be a contributing factor.
Objectives: This study aimed to analyze hearing, olfactory function, and color vision in patients with dementia.
Molecules
December 2024
Institute of Food Sciences, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.
The aim of this study was to investigate the effect of the addition of wild garlic leaves on the sensory quality, volatiles, color, and texture of sheep milk soft rennet-curd cheese. The sensory evaluation of color, appearance, texture, odor, and taste was performed using a 5-point scale. The intensity of selected taste and odor discriminants was also assessed.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland.
The objective of our paper was to evaluate the effect of honey powder addition on the quality of model chicken products over 14 days of refrigerated storage. Three model chicken product variants were produced: C-control, HP1%, HP2%-with 1 or 2% of honey powder addition. The cooking loss, basic chemical composition, water activity, texture, color, lipid oxidation (TBARS and PDSC), microbiological and sensory quality, and volatile compounds profile were determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!