The altanisation strategy, devised to design molecules with large and paratropic perimeter circulations, is applied to the family of [n]annulenes to give, altan-[n]annulenes, i.e. [n,5]coronenes. Analytical expressions are obtained for the eigenvalues of the Hückel Hamiltonian for altan-[n]annulenes, and used in conjunction with selection rules derived from the ipsocentric approach to predict patterns of global ring current in these systems. Density-functional calculations performed on seven altan-[n]annulenes, three neutral and four charged, give current-density maps in essential agreement with the predictions obtained at the unperturbed Hückel level. All but one of the systems show patterns with the tropicities expected for isolated annulenes, in line with the altanisation concept. The apparent exception is altan-[11]annulene-, the only singlet system with a well defined open-shell character in the studied set. The key role of open-shell character can be accommodated by appropriate choice of the occupation numbers of the initial Hückel molecular orbitals, where the anion altan-[11]annulene- is considered as an [11]annulene inside the [22]annulene anion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp06835j | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059, Rostock, GERMANY.
The linkage of an imidazole-based N-heterocyclic olefin (NHO), containing a terminal CH2 donor group, with a phosphorus-centered diradical molecular fragment leads to an open-shell singlet diphospha-indenylide system, a new class of P-heterocycles, which can be interpreted both as a phosphorus-centered diradicaloid and as a zwitterion with a permanent, overall charge separation between the N- and P-heterocyclic ring systems. The rotation of the imidazole ring, which is thermally possible due to a central C-C bond with a weakened π-component, changes both the charge separation and diradical character depending on the dihedral angle, as quantum mechanical calculations indicate. By varying the bulkiness of substituents at the imidazole-based NHO, it was possible to obtain different diphospha-indenylide species with different rotation angles in the solid state and hence varying diradical character.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, Brazil.
In this work, the stability, aromaticity and radical character of pristine and eleven BN-doped armchair 5 and zigzag 5, 6, and 7 periacenes, were chosen for studying the effect of different doping schemes to stabilize the periacene, and to direct the open-shell density into specific regions of the PAH sheets. Ab initio multireference methods and different DFT functionals were used to analyze the singlet triplet (ST) energy. Moreover, a range of descriptors were used to characterize the open-shell character and aromaticity of the different doped structures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Southern University of Science and Technology, Materials Science and Engineering, 1088 Xueyuan Blvd., Nanshan District, 518055, Shenzhen, CHINA.
Open-shell radical materials, which are characterized by unpaired electrons, have led to revolutionary breakthroughs in material science due to their unique optoelectronic properties. However, the involvement of organic radicals in photodynamic therapy (PDT) has rarely been reported or discussed. This work studies two photosensitizer analogs.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States.
We report the photogeneration and characterization of an open-shell, terminal iron nitrido (L)Fe(N) using a sterically encumbered dipyrrin ligand environment. The Fe-N distance in the solid-state, zero-field Fe Mössbauer spectrum, and computational analysis are consistent with a triplet electronic ground state of the iron nitrido. Notably, the attenuation of Fe-N multiple bond character through occupying π* enables (i) primary C(sp)-H amination, (ii) H cleavage, (iii) aromatic C-C cleavage, and (iv) photocatalytic -atom transfer reactivity.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Str. 4, 35032 Marburg, Germany.
Acenes are an important class of polycyclic aromatic hydrocarbons that have gained considerable attention from chemists, physicists, and material scientists, due to their exceptional potential for organic electronics. They serve as an ideal platform for studying the physical and chemical properties of sp carbon frameworks in the one-dimensional limit and also provide a fertile playground to explore magnetism in graphenic nanostructures due to their zigzag edge topology. While higher acenes up to tridecacene have been successfully generated by means of on-surface synthesis, it is imperative to extend their synthesis toward even longer homologues to comprehensively understand the evolution of their electronic ground state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!