Background/aims: Mitochondrial ATP synthase, in addition to being involved in ATP synthesis, is involved in permeability transition pore (PTP) formation, which precedes apoptosis in mammalian cells and programmed cell death in yeast. Mutations in genes encoding ATP synthase subunits cause neuromuscular disorders and have been identified in cancer samples. PTP is also involved in pathology. We previously found that in Saccharomyces cerevisiae, two mutations in ATP synthase subunit a (atp6-P163S and atp6-K90E, equivalent to those detected in prostate and thyroid cancer samples, respectively) in the OM45-GFP background affected ROS and calcium homeostasis and delayed yeast PTP (yPTP) induction upon calcium treatment by modulating the dynamics of ATP synthase dimer/oligomer formation. The Om45 protein is a component of the porin complex, which is equivalent to mammalian VDAC. We aimed to investigate yPTP function in atp6-P163S and atp6-K90E mutants lacking the e and g dimerization subunits of ATP synthase.
Methods: Triple mutants with the atp6-P163S or atp6-K90E mutation, the OM45-GFP gene and deletion of the TIM11 gene encoding subunit e were constructed by crossing and tetrad dissection. In spores capable of growing, the original atp6 mutations reverted to wild type, and two compensatory mutations, namely, atp6-C33S-T215C, were selected. The effects of these mutations on cellular physiology, mitochondrial morphology, bioenergetics and permeability transition (PT) were analyzed by fluorescence and electron microscopy, mitochondrial respiration, ATP synthase activity, calcium retention capacity and swelling assays.
Results: The atp6-C33S-T215C mutations in the OM45-GFP background led to delayed growth at elevated temperature on both fermentative and respiratory media and increased sensitivity to high calcium ions concentration or hydrogen peroxide in the medium. The ATP synthase activity was reduced by approximately 50% and mitochondrial network was hyperfused in these cells grown at elevated temperature. The atp6-C33S-T215C stabilized ATP synthase dimers and restored the yPTP properties in Tim11∆ cells. In OM45-GFP cells, in which Tim11 is present, these mutations increased the fraction of swollen mitochondria by up to 85% vs 60% in the wild type, although the time required for calcium release doubled.
Conclusion: ATP synthase subunit e is essential in the S. cerevisiae atp6-P163S and atp6-K90E mutants. In addition to subunits e and g, subunit a is critical for yPTP induction and conduction. The increased yPTP conduction decrease the S. cerevisiae cell fitness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.33594/000000215 | DOI Listing |
J Physiol
January 2025
Department of Biomedical Sciences, University of Padova, Padova, Italy.
The permeability transition (PT) is a permeability increase of the mitochondrial inner membrane causing mitochondrial swelling in response to matrix Ca. The PT is mediated by regulated channel(s), the PT pore(s) (PTP), which can be generated by at least two components, adenine nucleotide translocator (ANT) and ATP synthase. Whether these provide independent permeation pathways remains to be established.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Basic Medical Sciences, Guangzhou University of Chinese Medicine Guangzhou 511400, China.
The aim of this study was to investigate the underlying mechanism of chrysophanol(Chr) in reducing inflammation and foam cell formation induced by oxidized low-density lipoprotein(ox-LDL) and to investigate the targets and pathways related to effects of Chr on coronary atherosclerosis, providing a theoretical basis for the development of new clinical drugs. RAW264.7 macrophages were cultured in vitro, and after determining the appropriate concentrations of Chr and ox-LDL for treating RAW264.
View Article and Find Full Text PDFBiol Reprod
January 2025
Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO USA.
The mechanistic target of rapamycin (mTOR) system is vital to placental development, formation, and function. Alterations in this system in the placenta have been associated with altered fetal growth. However, changes in placental mTOR signaling across gestation are poorly understood.
View Article and Find Full Text PDFHypertension, a major cause of cardiomyopathy, is one of the most critical risk factors for heart failure and mortality worldwide. Loss of metabolic flexibility of cardiomyocytes is one of the major causes of heart failure. Although Catestatin (CST) treatment is known to be both hypotensive and cardioprotective, its effect on cardiac metabolism is unknown.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Our previous study revealed a link between O-GlcNAc transferase (OGT) localization and protein phosphatase 2A (PP2A) activity in osteoblast. Given the association of PP2A downregulation with osteoblast differentiation, we hypothesized that OGT localization changes during this process. We examined OGT localization in MC3T3-E1 cells undergoing differentiation under normal and high glucose conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!