A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interfacial Photoelectrochemical Catalysis: Solar-Induced Green Synthesis of Organic Molecules. | LitMetric

Interfacial Photoelectrochemical Catalysis: Solar-Induced Green Synthesis of Organic Molecules.

ChemSusChem

School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom.

Published: April 2020

Many oxidation and reduction reactions in conventional organic synthesis rely on harsh conditions, toxic or corrosive substances, and environmentally damaging chemicals. In addition, competing reactions may take place, some of which produce hazardous waste products and, therefore, reaction selectivity suffers. To overcome such synthetic drawbacks, an enormous effort is being devoted to find alternative processes that operate much more efficiently, requiring milder conditions to contribute to a greener economy and provide urgently needed new pathways with enhanced selectivity. Fortunately, there is a strategy that has attracted global interest from multiple disciplines that involves the use of sunlight to perform artificial photosynthesis, in which a photoelectrochemical cell splits water into hydrogen fuel, reduces CO into "solar" fuels, and more recently, convert organic chemicals into higher value products. Recently, photoanode and photocathode materials have emerged as useful tools to perform organic oxidations and reductions for the synthesis of important molecules, other than just hydrogen or oxygen. Whereas many studies have focused on the degradation of unwanted and dangerous chemicals, solar-induced organic transformations have attracted much less attention. This Minireview summarizes some of latest research efforts in using photoelectrochemical cells to facilitate organic oxidation and reduction reactions to avoid valuable substances while avoiding toxic reagents and expensive precious metal catalysts. Future developments that will enable such technologies to broaden their scope are also considered.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202000032DOI Listing

Publication Analysis

Top Keywords

oxidation reduction
8
reduction reactions
8
organic
6
interfacial photoelectrochemical
4
photoelectrochemical catalysis
4
catalysis solar-induced
4
solar-induced green
4
green synthesis
4
synthesis organic
4
organic molecules
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!