Toward the total synthesis of grayanane diterpene mollanol A by a Prins [3 + 2] strategy.

Org Biomol Chem

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A NanWei Road, Xicheng District, Beijing 100050, China.

Published: March 2020

Toward the total synthesis of a novel grayanoid, mollanol A, we developed a concise convergent strategy based on a formal [3 + 2] cyclization initiated by the Prins reaction. In this key intermolecular reaction between an unprotected hydroxyaldehyde and activating-group-free olefins, two chiral carbons and one densely substituted tetrahydrofuran ring were constructed stereoselectively.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0ob00160kDOI Listing

Publication Analysis

Top Keywords

total synthesis
8
synthesis grayanane
4
grayanane diterpene
4
diterpene mollanol
4
mollanol prins
4
prins strategy
4
strategy total
4
synthesis novel
4
novel grayanoid
4
grayanoid mollanol
4

Similar Publications

Background: An association exists between obesity and reduced testosterone levels in males. The propose of this research is to reveal the correlation between 15 indices linked to obesity and lipid levels with the concentration of serum testosterone, and incidence of testosterone deficiency (TD) among adult American men.

Methods: The study utilized information gathered from the National Health and Nutrition Examination Survey (NHANES) carried out from 2011 to 2016.

View Article and Find Full Text PDF

Background: Iron deficiency (ID) is the most common nutritional deficiency among patients undergoing major surgery. Treatment of ID is straightforward, however implementing a comprehensive anemia management strategy within clinical routines is complex. Recently, reticulocyte hemoglobin content (Ret-He) has been evaluated as an early marker for ID diagnosis.

View Article and Find Full Text PDF

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

Predicting early diagnosis of intensive care unit-acquired weakness in septic patients using critical ultrasound and biological markers.

BMC Anesthesiol

January 2025

Department of Critical Care Medicine, West China Hospital, Sichuan University, 37 Guo Xue Xiang St, Chengdu, 610041, Sichuan, China.

Objective: Early diagnosis of intensive care unit-acquired weakness (ICUAW) is crucial for improving the outcomes of critically ill patients. Hence, this study was designed to identify predisposing factors for ICUAW and establish a predictive model for the early diagnosis of ICUAW.

Methods: This prospective observational multicenter study included septic patients from the comprehensive ICUs of West China Hospital of Sichuan University and 10 other hospitals between September and November 2023.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!