Continuous Kinetic Sampling of Flow Polymerizations via Inline UV-Vis Spectroscopy.

Macromol Rapid Commun

Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146, Hamburg, Germany.

Published: May 2020

Gapless monitoring of polymerization reactions is of paramount interest for academia and the polymer industry, allowing for efficient reaction screening and precise tailoring of the polymeric products. Herein, UV-visible spectroscopy (UV-vis) is employed as an operando measurement technique in continuous flow polymerization with ex situ calibration, to calculate monomer conversions with unprecedented resolution of only 10 s. A mathematical model based on volume contraction is provided for the first time, which yields monomer conversions from the absorption in the visible region for theoretically any homopolymerization. This model is validated for different monomers, solvents, and concentrations in a photoiniferter reversible addition-fragmentation chain transfer polymerization, proving the versatility of the presented setup. Notably, an ultralow measurement volume of merely a few hundred nanoliters is enough to ensure high accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202000029DOI Listing

Publication Analysis

Top Keywords

monomer conversions
8
continuous kinetic
4
kinetic sampling
4
sampling flow
4
flow polymerizations
4
polymerizations inline
4
inline uv-vis
4
uv-vis spectroscopy
4
spectroscopy gapless
4
gapless monitoring
4

Similar Publications

Polyacrylonitrile (PAN)-based composite solid electrolytes (CSEs) hold great promise in the practical deployment of solid lithium batteries (SLBs) owing to their high voltage stability but suffer from poor stability against Li-metal. Herein, a poly(1,3-dioxolane) (PDOL)-graphitic CN (g-CN, i.e.

View Article and Find Full Text PDF

Lignin-coordinated niobium-based catalyst for the efficient conversion of industrial lignin in choline chloride-lactic acid integrated with ethanol deep eutectic solvent.

Int J Biol Macromol

January 2025

Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:

Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.

View Article and Find Full Text PDF

Genomic analysis of Vreelandella sp. F11 reveals its role in alginate utilization.

Mar Genomics

March 2025

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China. Electronic address:

Alginate, mainly produced by brown algae, is an important polysaccharide that supports the growth of marine bacteria. Vreelandella sp. F11 is a Gram-negative and aerobic marine bacterium, which was isolated from the brown algae sample collected from the Weihai coast, the Yellow Sea, China.

View Article and Find Full Text PDF

[Biomanufacturing driven by engineered organisms].

Sheng Wu Gong Cheng Xue Bao

January 2025

Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.

This article reviews the review articles and research papers related to biomanufacturing driven by engineered organisms published in the Chinese Journal of Biotechnology from 2023 to 2024. The content covers 26 aspects, including chassis cells; gene (genome) editing; facilities, tools and methods; biosensors; protein design and engineering; peptides and proteins; screening, expression, characterization and modification of enzymes; biocatalysis; bioactive substances; plant natural products; microbial natural products; development of microbial resources and biopesticides; steroidal compounds; amino acids and their derivatives; vitamins and their derivatives; nucleosides; sugars, sugar alcohols, oligosaccharides, polysaccharides and glycolipids; organic acids and monomers of bio-based materials; biodegradation of polymeric materials and biodegradable materials; intestinal microorganisms, live bacterial drugs and synthetic microbiomes; microbial stress resistance engineering; biodegradation and conversion utilization of lignocellulose; C1 biotechnology; bioelectron transfer and biooxidation-reduction; biotechnological environmental protection; risks and regulation of biomanufacturing driven by engineered organisms, with hundreds of technologies and products commented. It is expected to provide a reference for readers to understand the latest progress in research, development and commercialization related to biomanufacturing driven by engineered organisms.

View Article and Find Full Text PDF

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!