Despite huge need in the medical domain and significant development efforts, artificial cells to date have limited composition and functionality. Although some artificial cells have proven successful for producing therapeutics or performing in vitro specific reactions, they have not been investigated in vivo to determine whether they preserve their architecture and functionality while avoiding toxicity. Here, these limitations are overcome and customizable cell mimic is achieved-molecular factories (MFs)-by supplementing giant plasma membrane vesicles derived from donor cells with nanometer-sized artificial organelles (AOs). MFs inherit the donor cell's natural cytoplasm and membrane, while the AOs house reactive components and provide cell-like architecture and functionality. It is demonstrated that reactions inside AOs take place in a close-to-nature environment due to the unprecedented level of complexity in the composition of the MFs. It is further demonstrated that in a zebrafish vertebrate animal model, these cell mimics show no apparent toxicity and retain their integrity and function. The unique advantages of highly varied composition, multicompartmentalized architecture, and preserved functionality in vivo open new biological avenues ranging from the study of biorelevant processes in robust cell-like environments to the production of specific bioactive compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029636PMC
http://dx.doi.org/10.1002/advs.201901923DOI Listing

Publication Analysis

Top Keywords

cell mimics
8
artificial cells
8
architecture functionality
8
bioinspired molecular
4
molecular factories
4
architecture
4
factories architecture
4
architecture vivo
4
vivo functionalities
4
functionalities cell
4

Similar Publications

Lymphocytic esophagitis (LE) is an uncommon subtype of esophagitis defined by persistent esophageal inflammation characterized by a high count of intraepithelial lymphocytes with scarce granulocytes. Although LE can present with atypical features such as chest pain, its clinical presentation can mimic that of gastroesophageal reflux disease or eosinophilic esophagitis, highlighting the importance of biopsy in diagnosing LE. Studies are still limited in understanding the pathophysiology behind this disease warranting further research.

View Article and Find Full Text PDF

A researcher's guide to studying sex differences in immune aging.

Trends Mol Med

January 2025

Leonard Davis School of Gerontology, University of Southern California (USC), Los Angeles, CA 90089, USA; Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089, USA; Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA; Epigenetics and Gene Regulation, USC Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA; USC Stem Cell Initiative, Los Angeles, CA 90089, USA. Electronic address:

Sex differences in immune system aging significantly impact disease susceptibility and vaccine responses among older adults, but with notable disparities between men and women. This area has gained importance because vaccines can exhibit differential efficacy by sex in aging populations, underscoring the need for sex-specific strategies. As the global population ages, understanding these sex-based immune differences is crucial for developing targeted interventions for age-related diseases.

View Article and Find Full Text PDF

D-allulose enhances lipid oxidation in HepG2 cells via peroxisome proliferator-activated receptor α (PPARα).

Biochim Biophys Acta Mol Cell Biol Lipids

January 2025

Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, FL 32209, United States of America.

Lipid accumulation in hepatocytes in non-alcoholic steatohepatitis (NASH) is attributed partly to loss of insulin-responsiveness and/or an increased pro-inflammatory state. Since the rare sugar D-allulose has insulin mimetic and anti-inflammatory properties, its effects on lipid accumulation in liver-derived cells was tested. In HepG2 cells exposed to 200 μM oleic acid for 72 h, D-allulose treatment decreased intracellular lipid accumulation with an IC = 0.

View Article and Find Full Text PDF

Aims: Fibroblast growth factor (FGF) is a broad class of secretory chemicals that act via FGF receptors (FGFR). The study aims to explore the role of a novel peptide, FAP1 (FGFR-agonistic peptide 1), in tissue regeneration and repair. It investigates whether FAP1 mimics basic fibroblast growth factor (bFGF) and accelerates wound healing both in vitro and in vivo.

View Article and Find Full Text PDF

Combating sepsis-induced acute lung injury: PARP1 inhibition mediates oxidative stress mitigation and miR-135a-5p/SMAD5/Nanog axis drives regeneration.

Int Immunopharmacol

January 2025

Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India. Electronic address:

Purpose: The purpose of this study was to investigate the therapeutic potential of Poly (ADP-ribose) polymerase 1 (PARP1) inhibition combined with microRNA miR-135a-5p overexpression in sepsis-induced acute lung injury (ALI). Specifically, we aimed to elucidate combinatorial therapeutic potential of PARP1 inhibition in mitigating oxidative stress and inflammation across different models, simultaneously miR-135a-5p overexpression promoting regeneration through the SMAD5/Nanog axis.

Method: We used C57BL/6 mice to create Cecal Ligation Puncture (CLP) model of Sepsis-induced Acute Lung Injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!