An efficient in vitro regeneration system using epicotyl segments was developed and then used for optimizing genetic transformation of the Tunisian 'Maltese half-blood' () variety using phosphinothricin (PPT) resistance as a selectable marker. The maximum regeneration efficiency was achieved after incubating epicotyl explants (excised in an oblique manner) in MT culture media containing BAP (4 mg/l) and IAA (0.3 mg/l) hormonal combination in the dark for 3 weeks before their transfer to light. Data from the genetic transformation assays indicated that the highest number of regenerated-transformants was reached when the selection phase was conducted in MT culture media containing PPT (0.25 mg/l) and Carbenicillin (500 mg/l) for 3 weeks in the dark followed by 8 weeks of light. After that, transformed buds were maintained for eight additional weeks in the same culture media but with reduced PPT concentration (0.125 mg/l) before decreasing Carbenicillin dose (250 mg/l) at the second half of this last incubation period which allowed both a good shoot proliferation and an optimal rooting efficiency. Based on molecular analyses, the transgenicity of 21.42% of the regenerated vitroplants was confirmed. The developed regeneration and transformation procedures of the elite 'Maltese half-blood' variety can be used for orchard renewal as well as for functional studies and genome editing purposes to develop new cultivars with the desired genetic traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005243PMC
http://dx.doi.org/10.1007/s13205-020-2097-6DOI Listing

Publication Analysis

Top Keywords

genetic transformation
12
'maltese half-blood'
12
culture media
12
vitro regeneration
8
regeneration system
8
transformation tunisian
8
tunisian 'maltese
8
half-blood' variety
8
establishment vitro
4
regeneration
4

Similar Publications

Cleft lip and palate (CL/P) are prevalent congenital anomalies with complex genetic causes. The G874A mutation of T-box transcription factor 22 (TBX-22) gene is notably associated with CL/P, while the underlying mechanism remains to be clarified. Studies have shown that the restriction of epithelial-mesenchymal transformation (EMT) process in medial edge epithelial cells (MEEs) is crucial for CL/P development.

View Article and Find Full Text PDF

Recent studies suggest that lung adenocarcinoma cells are closely associated with the tumorigenesis of large-cell neuroendocrine carcinoma via cellular transformation. However, morphological evidence, along with genetic abnormalities before, during, and after transformation, is quite limited. We present here a case of combined large-cell neuroendocrine carcinoma and adenocarcinoma exhibiting acinar and solid patterns.

View Article and Find Full Text PDF

Airway stenosis (AS) is a fibroinflammatory disease characterized by abnormal activation of fibroblasts and excessive synthesis of extracellular matrix, which has puzzled many doctors despite its relatively low prevalence. Traditional treatment such as endoscopic surgery, open surgery, and adjuvant therapy have many disadvantages and are limited in the treatment of patients with recurrent AS. Therefore, it is urgent to reveal the pathogenesis of AS and accelerate its clinical transformation.

View Article and Find Full Text PDF

SSR marker-based genetic diversity and structure analyses of var. from different populations.

PeerJ

January 2025

Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, Guangxi, China.

Background: var. is a variety in the section of the genus of the family Theaceae which is native to Fangchenggang, Guangxi, China. To date, the genetic diversity and structure of this variety remains to be understood.

View Article and Find Full Text PDF

Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia.

Sci Rep

January 2025

Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.

Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!