Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The concept of 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted 3D bio-printing technology for cartilage regeneration, and explore its potential in clinical application. A six-degree-of-freedom (6-DOF) robot was introduced in this study, and a fast tool center point (TCP) calibration method was developed to improve printing accuracy. The bio-ink consisted of hyaluronic acid methacrylate and acrylate-terminated 4-armed polyethylene glycol was employed as well. The experiment was performed on a resin model to verify the printing accuracy. The experiment was conducted on rabbits to evaluate the cartilage treatment capability. According to our results, the accuracy of the robot could be notably improved, and the error of printed surface was less than 30 μm. The osteochondral defect could be repaired during about 60 s, and the regenerated cartilage in hydrogel implantation and 3D bio-printing groups demonstrated the same biomechanical and biochemical performance. We found that the cartilage injury could be treated by using this method. The robotic-assisted 3D bio-printing is highly appropriate for improving surgical procedure, as well as promoting cartilage regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7030996 | PMC |
http://dx.doi.org/10.1016/j.jare.2020.01.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!