Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A gene co-expression network (CEN) is of biological interest, since co-expressed genes share common functions and biological processes or pathways. Finding relationships among modules can reveal inter-modular preservation, and similarity in transcriptome, functional, and biological behaviors among modules of the same or two different datasets. There is no method which explores the one-to-one relationships and one-to-many relationships among modules extracted from control and disease samples based on both topological and semantic similarity using both microarray and RNA seq data. In this work, we propose a novel fusion measure to detect mapping between modules from two sets of co-expressed modules extracted from control and disease stages of Alzheimer's disease (AD) and Parkinson's disease (PD) datasets. Our measure considers both topological and biological information of a module and is an estimation of four parameters, namely, semantic similarity, eigengene correlation, degree difference, and the number of common genes. We analyze the consensus modules shared between both control and disease stages in terms of their association with diseases. We also validate the close associations between human and chimpanzee modules and compare with the state-ofthe- art method. Additionally, we propose two novel observations on the relationships between modules for further analysis.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!